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Forecasting Methodology

Data: Dengue cases by municipalities and week, ENSO index, and
Brazilian states coordinates.

Model: Chronos, a language model framework for time series forecasting.
The model is pre-trained on a large dataset of time series data, and was
fine-tuned on the dengue cases data.

Tools: ‘Autogluon‘, a library that provides a high-level interface for
training and evaluating time-series models.

Post-Processing:

Sort quantiles to ensure monotonicity.

Set negative values to zero.

Interpolate and extrapolate quantiles to obtain the required intervals.
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Choice of climate product 
matters

Hierarchical Bayesian mixed model with covariate interactions

ys,t |  μs,t, Ⲕ ~ NegBin(μs,t, Ⲕ)

log(μs,t) = log(ρs,t) + log(ps,a(t))

log(ρs,t) = α + (βT XT + βL XL + βS XS + βT,L XT XL + βT,S XT XS + βL,S XL XS +

βT,L,S XT XL XS + βA XA)K + βN XN + βC,U(s) XC,U(s) + δw(t),U(s) + γa(t) + u + v

t =   temporal index
a(t) =   annual index
w(t) =   week index
s =   spatial index
U(s) =   state index

A =   absolute temperature
T =   temperature anomaly
L =   long-lag drought index
S =   short-lag drought index
N =   niño index
C =   pre-2018 index (binary)

population offset

dengue 

incidence rate

climate and oceanic 

covariates

spatio-temporal 

random effects

Source: Fletcher & Mila et al. (in prep)
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Best model for predicting the upcoming dengue season in Brazil 

Source: Fletcher & Mila et al. (in prep)

XT XL

XS

XA XN XC

K U

(Weekly RE)U and Spatial RE
T  =  6-month mean temp anomaly (lagged 1 month)

L  =  12-month SPEI (lagged 3 months)

S  =  3-month SPEI (lagged 1 month)

A  =  6-month mean abs temp (lagged 1 month)

N  =  3-month Niño 3.4 index (ONI) (lagged 7 months)

C  =  Pre-2018 binary index -

K  =  Köppen classification -

U  =  State -



Source: Fletcher & Mila et al. (in prep)

Weekly national and state-level validation results for 3 dengue seasons



Weekly national and state-level dengue forecasts for 2025/26 season

Source: Fletcher & Mila et al. (in prep)



Imperial College London

Time-varying Covariates

Data

Target: Weekly number of dengue cases per state in Brazil1

2 3

Population-weighted aggregation of 

municipality-level climate values to state-

level (min, med, max)

Temperature

Precipitation

Relative Humidity

Pressure

Static Covariates

Used proportion of state population living 

in each Köppen climate class and Brazilian 

biome (aggregating from municipalities)
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Model
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Masked Interpretable Multi-head Attention
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Known Future Inputs

1. Lim B, Arık SÖ, Loeff N, Pfister T. Temporal Fusion Transformers for interpretable multi-horizon time 
series forecasting. Int J Forecast 2021; 37(4): 1748-64.

2. Herzen J, Lässig F, Piazzetta SG, et al. Darts: user-friendly modern machine learning for time series. J 
Mach Learn Res 2022; 23(1).

Temporal fusion transformer (TFT): deep-

learning-based forecasting method 

Main features:

1. Automated variable selection 

and importance weighting

2. Scalable complexity through use 

of skip connections

3. Flexibility in use of covariates 

(static, past, or future covariates all 

allowed)

4. Multi-head attention for learning 

longer range temporal patterns
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Pipeline

TRAIN 1 TARGET 1GAP

TUNE TRAIN 3 GAP VAL 3

CLIM TUNE 
TRAIN 1 GAP CVAL 1

• Initial training set split into multiple 

train-validation folds

• Hyperparameters tuned using Optuna 

optimising on mean quantile loss 

(MQL) across three validation sets

…
…

State Climate Climate Random Forests

TUNE TRAIN 1

…
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…
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DEN
TFT3

Clim Fc

DEN
TFT2

Clim Fc

TRAIN 1

TRAIN 2

TRAIN 3

TARG1 TARG2 TARG3

• Random forests trained to generate climate 

forecasts used in dengue model as future 

covariates

• Incremental fine-tuning of previous models as 

new data “arrives” then forecasts are generatedAkiba T, Sano S, Yanase T, Ohta T, Koyama M. Optuna: A Next-generation Hyperparameter Optimization 
Framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data 
Mining. New York, NY, USA: Association for Computing Machinery: 2623–31. 



ISI Dengue Model

ISI Foundation, Turin (Italy)
Davide Nicola



Temperature and Precipitation 
Dependent : Egg Laying Rate𝜋
θ: Development rate

P: Susceptible Eggs
Q: Infected Eggs 

S: Susceptible 
Humans/Vectors
E: Exposed Humans/Vectors
I: Infective Humans/Vectors
R: Recovered Humans

𝜆: Force of Infection
𝛼: Incubation Rate
𝛽: Recovery Rate
𝜇: Natural Mortality Rate
γ: DNV Mortality Rate



Model 
Calibration

● Parameters:
○ Human to Vector Transmission

Probability -> Beta Distribution (  = 2.0 -  = 𝛼 𝛽
20.0) 

○ Vector to Human Transmission
Probability -> Beta Distribution (  = 8.0 -  = 𝛼 𝛽
5.5)

○ Percentage of Susceptible 
Population -> Beta Distribution (  = 3.0 -  = 𝛼 𝛽
20.0)● Methods:

○ Markov Chain Monte Carlo (PyMC)
■ 6 chains
■ 5000 samples
■ 5000 tuning samples

Corner Plot and Posterior of the MCMC



Results



Dengue Forecast Model with Seasonal and Gravity
Components

Marcio Maciel Bastos

October 14, 2025
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Outline

1 Introduction

2 Content
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Introduction

This model combines seasonal dynamics, representing the yearly
dengue cycle, with spatial interaction, where transmission strength
depends on population and distance between regions.
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Model

Sazonality: gs(t) =
∑N

n=0 an(σs) cos
( 2πn(t−µs)

T

)
, an(σs) = exp

(
− 2π2σ2

sn
2

T2

)
,

maxt gs(t) = 1.

Gravity: gravi,t = κ(POPi,t)
αS

∑
j(POPj,t)

βId−γ
ij .

Logit: ηs,t = amps gs(t) + gravs,t.
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Model

Figure 1: Bayesian Model
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