Infodengue-Mosqlimate Challenge 2025 Ensemble models results

Flávio Codeço Coelho

Mosqlimate Research Team

October 15, 2025

- Overview
- 2 Contributors
- 3 The Ensemble
- A Results
- 6 Acknowledgements

Overview

Overview •0

- Contributors
- 3 The Ensemble
- A Results
- 6 Acknowledgements

Ensemble Results

Goal:

Overview

Present the results of ensembling the contributed forecasting models, during the 2025 sprint^a.

^aOrganized by: mosqlimate.org and info.dengue.mat.br

Organization:

Funding:

- 2 Contributors
- The Ensemble
- A Results
- **5** Acknowledgements

Participants

Overview

15 teams submitted 19 predictive models for dengue in Brazil.

D-fense: UERJ/LNCC (Brazil)

Dengue oracle: FGV-EMAp (Brazil)

LaCiD/UFRN : LaCiD-UFRN (Brazil)

DS_OKSTATE : OSU (USA)

Beat it : Fiocruz (Brazil)

Strange Attractors: FGV-EMAp (Brazil)

DengueSprint: Cornell University

(USA)

TSMixer ZKI-PH4: Robert Koch

Institute (Germany)

October 15, 2025

CERI Forecasting Club : CERI

Stellenbosch University

(South Africa)

Imperial College London : ICL (UK)

GeoHealth: KAUST (Saudi Arabia)

Global Health Resilience: BSC (Spain)

ISI Foundation: ISI (Italy)

JBD-Mosqlimate: FGV EMAp (Brazil)

Preditores da Picada: IMPA-Tech (Brazil)

Models

Model ID	Model	Approach
108	Preditores da picada	Autoregressive
133	Chronos-Bolt	Machine learning / Neural Network
134	ISI_Dengue_Model	Mechanistic
135	GHR Model	Bayesian
136	Imperial-TFT Model	Machine learning / Neural Network
143	Strange Attractors	Bayesian
144	Beat it	Bayesian
145	CNNLSTM	Machine learning / Neural Network
150	LNCC-AR_p-1	Autoregressive
152	LNCC-CLIDENGO-1	Mechanistic
154	LNCC-SURGE-1	Mechanistic
155	Dengue Oracle M1	Machine learning / Neural Network
156	Dengue Oracle M2	Machine learning / Neural Network
157	UERJ-SARIMAX-2	Autoregressive
158	DengueSprint_Cornell-PEH_2	Bayesian 🌋 🚺 N
		DEN

- Overview
- Contributors
- 3 The Ensemble
- A Results
- 6 Acknowledgements

Inclusion Criteria

Overview

Of the 19 models, 3 were not eligible for the sprint due to methodological issues, and 1 did not submit forecast predictions. Thus, only ${\bf 15}$ models were included in the final ensemble analysis.

October 15, 2025

Forecast puzzle

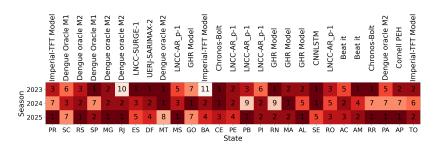


Figure 1: Ranking position of the best model throughout the entire period in each validation season. The ranking was calculated based on the WIS in the season.

Ensemble methods

Overview

All models submitted predictions consisting of the following percentiles $(p_{2.5}, p_5, p_{10}, p_{25}, p_{50}, p_{75}, p_{90}, p_{95}, p_{97.5})$.

Ensemble models

The ensemble models are built as the median of the model's predictive intervals. This approach was originally proposed by the COVID Hub a .

^aRay et al. (2023) International Journal of Forecasting

The resulting models were similar to those obtained by logarithmic pooling with equal weights, used in the previous sprint, but this methodology does not require a parametric approximation.

Score Normalization

Overview

 For each validation test, a normalized WIS score was computed by aggregating across all weeks as defined below:

$$WIS^{norm} = \frac{1}{Y_{total}} \sum_{t=1}^{T} WIS_t, \tag{1}$$

where:

- WIS_t is the Weighted Interval Score for week t,
- ullet $Y_{
 m total}$ is the total number of cases in the validation period, and
- T is the total number of weeks in the validation period.

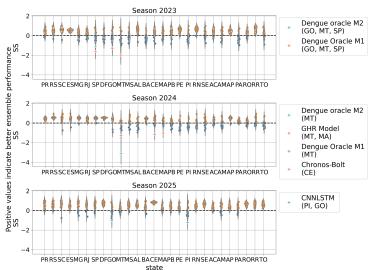
An ensemble built from the **top 5** models from the first two validation sets, was compared to individual models, in 2025, in terms of relative Skill scores.

- Overview
- Contributors
- 3 The Ensemble
- A Results
- 6 Acknowledgements

Ensemble (all models) vs. Individual Models

To assess the performance of the ensemble relative to the individual models, we computed the Skill Score (SS) of the Weighted Interval Score (WIS), defined as follows:

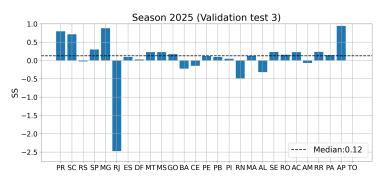
$$SS_{m,v} = 1 - \frac{WIS_{\mathsf{Ensemble},v}^{\mathsf{norm}}}{WIS_{m,v}^{\mathsf{norm}}},$$
 (2)


where m denotes an individual model and v corresponds to a specific validation test. Positive values indicate that the ensemble model outperforms the individual model in terms of WIS.

Overview

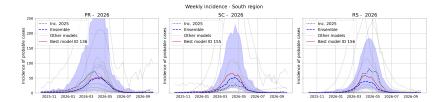
Results

0000000000000000



Ensemble (top 5) vs. best model.

Ranked according to the mean WIS^{norm} at validations tests 1 and 2

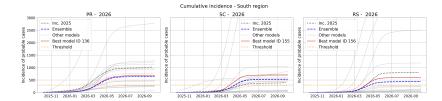

This ensemble is more consistent across states and, on average, 12 % more accurate than the best model.

Infodengue-Mosalimate Challenge 2025

Overview

South region (weekly)

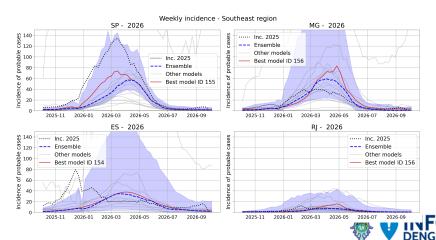
Weekly incidence:



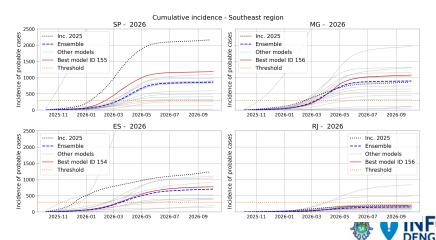
South region (cumulative)

Overview

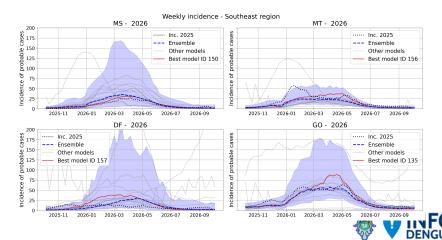
Cumulative incidence:



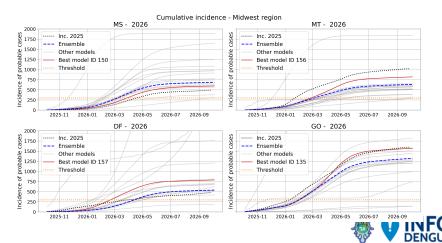
Southeast region (weekly)


Weekly incidence:

Overview

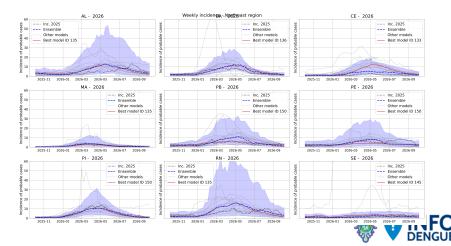

Southeast region (cumulative)

Cumulative incidence:



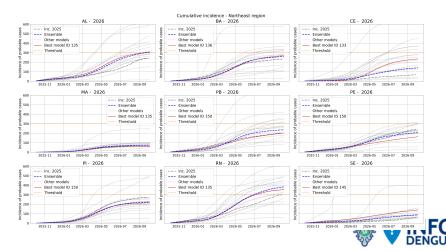
Midwest region (weekly)

Weekly incidence:


Cumulative incidence:

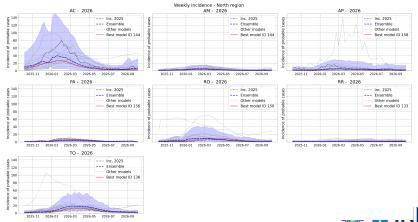
Northeast region (weekly)

Weekly incidence:


Overview

Northeast region (cumulative)

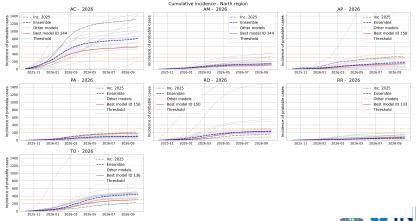
Cumulative incidence:


Overview

North region (weekly)

Overview

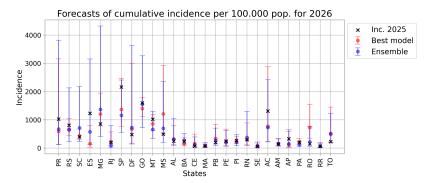
Weekly incidence:



North region (cumulative)

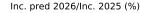
Cumulative incidence:

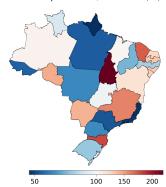
Overview



Results 0000000000000000

Brazil


Cumulative incidence:



Brazil (incidence map)

	Inc. pred 2026	Inc. 2025	Ratio 2026/2025 (
PR -	671.35	1025.61	65.46
RS -	641.57	807.54	79.45
SC -	716.06	398.09	179.87
ES-	573.74	1228.34	46.71
MG -	1364.69	856.06	159.42
RJ -	93.80	200.45	46.80
SP -	1158.15	2162.84	53.55
DF -	726.88	477.70	152.16
GO -	1553.60	1599.21	97.15
MT -	661.82	1019.34	64.93
MS -	696.60	492.99	141.30
AL -	318.64	242.97	131.14
υ BA-	273.53	233.19	117.30
State BA CE -	115.37	66.74	172.85
თΑ-	75.33	73.29	102.79
PB -	266.78	202.19	131.94
PE -	196.34	241.37	81.34
PI -	202.54	270.61	74.85
RN -	373.56	298.75	125.04
SE -	73.14	56.39	129.71
AC -	728.84	1309.63	55.65
AM -	150.99	143.65	105.11
AP -	149.75	329.08	45.51
PA -	116.80	212.92	54.86
RO -	218.13	151.13	144.34
RR -	60.95	67.10	90.83
TO -	496.32	225.82	219.78

- Overview
- Contributors
- 3 The Ensemble
- A Results
- 6 Acknowledgements

Mosqlimate Team

Important dates

Overview

Save these dates!

- Webinar presenting the results for the Brazilian Ministry of Health - October 31th, 2025
- 2 Next Sprint: Please watch our website: TBA in early 2026!

Thanks! And see you again scon...

Checkout our report!

