Webinário

Vírus linfotrópico de células T humanas (HTLV): a ameaça silenciosa e suas manifestações neurológicas

30 Nov, 2023, 13:00 GMT/10:00 BR/AR

Registre-se

Tradução simultânea
PT-ESP-ING
Panel

Chair: Augusto César Penalva de Oliveira - Supervising Physician, Neurology Medical Team, Emílio Ribas Infectious Diseases Institute, Brazil

Steven Jacobson - Senior Investigator, Viral Immunology Section, Neuroimmunology and Neurovirology Division (NND), National Institutes of Health (NIH), USA

Lucia Brito - Neurophysiologist, Reference Center for the Care of Patients with Demyelinating Diseases, Restauração Hospital, Ministry of Health, Brazil

Carlos Pardo - Director, Johns Hopkins Myelitis & Myelopathy Center, Baltimore, Maryland, USA

Clarice Neuenschwander - Senior Researcher at the Laboratory of Virology and Experimental Therapy, Fiocruz Pernambuco, Fiocruz, Brazil.

Cristiane Campello Bresani – Senior Researcher at the Laboratory of Virology and Experimental Therapy, Fiocruz Pernambuco, Fiocruz, Brazil.
Resources

- https://portal.fiocruz.br/en
- https://fiocruz.tghn.org/
- https://lac.tghn.org/
- https://www.instagram.com/HTLVBrasil/
- https://fiocruz.tghn.org/health-topics/neuroinfeccoes/grupo-neuroinfeccoes/
HTLV and the human host: a long-standing interaction

Dr Steven Jacobson, PhD

Viral Immunology Section, Neuroimmunology and Neurovirology Division, National Institutes of Health, USA
Immunopathogenesis of HTLV-I Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP)
Human T-cell lymphotropic virus type 1 (HTLV-1)
Research of rare diseases can inform understanding of common neurological disorders
HTLV-I Associated Myelopathy/Tropical Spastic Paraparesis: Similarities and Differences with Multiple Sclerosis

<table>
<thead>
<tr>
<th></th>
<th>HAM/TSP</th>
<th>MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical</td>
<td>Chronic progressive myelopathy</td>
<td>Resembles primary progressive "spinal" form of MS.</td>
</tr>
<tr>
<td>Oligoclonal Bands</td>
<td>Yes To HTLV-I antigens.</td>
<td>Yes To unknown antigens.</td>
</tr>
<tr>
<td>MRI</td>
<td>Atrophy of spinal cord. Mimics CNS demyelination in brain similar to MS.</td>
<td>Demyelinating lesions of CNS white matter.</td>
</tr>
<tr>
<td>Disease for life</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Etiologic Agent</td>
<td>HTLV-I</td>
<td>Unknown: Viruses considered.</td>
</tr>
<tr>
<td>Demyelination</td>
<td>Yes Predominantly of corticospinal tracts, mild in posterior columns.</td>
<td>Yes Diffuse involvement of spinal cord white matter; Corticospinal and posterior columns severely affected</td>
</tr>
<tr>
<td>Inflammation</td>
<td>Yes Present at all levels of CNS; Predominates in spinal cord at levels of severe demyelination.</td>
<td>Yes Moderate in CNS lesions.</td>
</tr>
<tr>
<td>Lymphocytes In lesions</td>
<td>Yes CD4 and CD8 early in disease; CD8 persist in late disease.</td>
<td>Yes Combination of CD4 and CD8.</td>
</tr>
<tr>
<td>Immune Response</td>
<td>Yes Spontaneous lymphoproliferation; High HTLV-I specific antibody and CTL.</td>
<td>Yes Activated T cells in CSF and blood.</td>
</tr>
<tr>
<td>HLA association</td>
<td>Yes Japanese associated alleles</td>
<td>Yes HLA DRB1*1501</td>
</tr>
</tbody>
</table>
Outcomes of HTLV-1 infection

- Asymptomatic carrier (90-95%)
- Adult T cell leukemia/lymphoma (2-5%)
- HTLV-1 associated myelopathy/tropical spastic paraparesis (0.25-3.8%)
- Other inflammatory manifestations: Arthropathy, uveitis, dermatitis, polymyositis, pneumonitis, other (?)

HTLV-1 infected people: 10-20 million

Seroprevalence of HTLV-I/II

Viral Immunology Section- HTLV-I/II Clinic
Protocol Participants: Country of Origin

HTLV1 Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP)

- Myelopathy – disease related to the spinal cord
- Demographics: females>males, median age 45-55 years
- Symptoms:
 - Back pain
 - Lower extremity weakness, falls
 - Stiffness
 - Urinary incontinence
 - Bowel incontinence or constipation
 - Sexual dysfunction
 - Sensory disturbances

Clinically suggests disease process is in thoracic cord

http://hamtsp-net.com/english/about/index.html
425 patients
(HAM/TSP, Asymptomatic carriers (AC), HTLV-2 patients, HTLV-I/II seroindeterminates, family members)

Biobanked samples
31710 PBMCs
5585 serum
922 CSF
102 saliva
250 plasma
Association of Viruses and Chronic Progressive Neurologic Disease

Translational Studies

HTLV-I → **known etiology** → **HAM/TSP**

Virus? → **suspected etiology** → **Multiple Sclerosis**

- **Anti-tac**
- **Daclizumab**
- **β-interferon**
- **Teriflunomide (Aubagio)**

Treatment
HTLV-I

How Can Virus That Affects Millions of People Be Associated With Disease in a Small Subset of Patients?

- Virus
- Genetics
- Host Immune Response
Etiology of Multiple Sclerosis

Environmental factors
- Geographic distribution
- Migration studies
- Outbreaks

Immunological factors
- Pathology
- CSF Ig Abnormalities
- T cell Abnormalities
- Relationship to EAE

Genetic factors
- Increased risk in families
- Increased risk in monozygotic twins
- Association with genetic markers
- Low risk in some ethnic groups
Number of subjects

D ~0.5 ~1 ~1.5 ~2 ~2.5 ~3.5

Asymptomatic Carriers

HAM/TSP Patients and Carriers

Distribution pattern of HTLV-I Proviral Load in PBMC of HAM/TSP Patients and Carriers

Log10 (HTLV-I proviral load / 10^4 PBMC)
HAM/TSP is Characterized by an Activated Immune Response

- HTLV infection
- Viral mRNA and protein expression
- Inflammatory cytokine expression

<table>
<thead>
<tr>
<th>Biomarkers</th>
<th>Asymptomatic carriers</th>
<th>HAM/TSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proviral DNA load</td>
<td>Lo</td>
<td>Hig</td>
</tr>
<tr>
<td>Viral mRNA load</td>
<td>w</td>
<td>h</td>
</tr>
<tr>
<td>Virus-specific CD8(^+) T cell</td>
<td>Lo</td>
<td>Hig</td>
</tr>
<tr>
<td>Spontaneous proliferation</td>
<td>w</td>
<td>h</td>
</tr>
<tr>
<td>Inflammatory cytokine production (IFN-(\gamma), TNF-(\alpha))</td>
<td>Lo</td>
<td>Hig</td>
</tr>
</tbody>
</table>
Induction of HTLV-I specific T cell Responses

DNA PCR RNA PCR TCR-like antibodies HLA A201/tax tetramers

HTLV-I tax specific CD8+ T Cells
Tax mRNA expression Protein (peptide loaded HLA)

DNA RNA peptide T cells

CD4+ HTLV-I

Induction of HTLV-I specific T cell Responses

Yamano et al., Blood 99:88, 2002

TCR-like antibodies

Yamano et al., Blood 99:88, 2002

Oh, et al., Blood, 117: 3363-3369, 2011,

Enose-Akahata et al., Plos Pathogen 5(12):2009

Yamano, et al., Plos One 4(8), 2009,

Grant et al., Blood 15:5601-5609, 2008
CD8+

T cell Recognition of MHC/peptide Complexes

HLA A201/tax tetramers
Research of rare diseases can inform understanding of basic immunology
Class I MHC (HLA-A2)

HTLV-I Tax peptide:
L L F G Y P V Y V

HTLV-I-specific CD8+ TCR

Lessons from HAM/TSP

HTLV-I Tax-specific CD8+ T cells increased in HLA A201 PBMC from HAM/TSP patients (NIH and Japan)
Expansion of HTLV-I tax11-19 Tetramer Reactive CD8+ Cells in the CSF of HAM/TSP Patients

HAM/TSP patient

HAM/TSP patient

HAM/TSP patient

Tax-Tetramer CMV-Tetramer

PBM C

CSF cells

Tax-Tetramer CMV-Tetramer

PBM C

CSF

Tax-Tetramer CMV-Tetramer

PBM C

CSF
HTLV-I proviral load is increased in CSF of HAM/TSP patients
digital droplet PCR (ddPCR)
Differentiation of HAM/TSP from patients with multiple sclerosis infected with HTLV-I

M. Puccioni-Sohler, MD, PhD; Y. Yamano, MD, PhD; M. Rios, PhD; S.M.F. Carvalho, PhD; C.C.F. Vasconcelos, MD; R. Papais-Alvarenga, MD, PhD; and S. Jacobson, PhD

Table 2 Mean ± SD of PBMC and CSF of 17 HAM patients (Group I) in comparison with 18 non-HAM patients (Group II)

<table>
<thead>
<tr>
<th></th>
<th>HAM/TSP (Group I), n = 17</th>
<th>Non-HAM/TSP (Group II), n = 18</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBMC HTLV-I proviral load/100-cell copies</td>
<td>38 ± 26</td>
<td>9 ± 5</td>
<td><0.005</td>
</tr>
<tr>
<td>CSF HTLV-I proviral load/100-cell copies</td>
<td>83 ± 5</td>
<td>1.9 ± 5</td>
<td><0.005</td>
</tr>
</tbody>
</table>

PBMC = peripheral blood mononuclear cells; HAM/TSP = human T lymphotropic virus type I (HTLV-I)-associated myelopathy/tropical spastic paraparesis.
Model of Immunopathogenesis in HAM/TSP

Peripheral blood
- CD4+ T cells
- CD8+ T cells

Monocyte/macrophage

Central Nervous System
- HTLV-I provirus
- HTLV-I antigen
- HTLV-I specific CD8+ cell
- Neurotoxic cytokines (IFN-γ, TNF-α)
- Damaged Neuron
- Glial cells

Responding and Proliferating cells
- Expansion

Immune response to HTLV-I antigen expressing cells

Blood Brain Barrier
Can HTLV-I Specific CD8+ T cells be detected in the CNS of HAM/TSP Patients?
Inflammatory CD8+ Cells in HAM/TSP Spinal Cord

H&E

CD3+

CD8+

CD4+
Detection of HTLV-I in GFAP+cells in HAM/TSP CNS Samples

HAM/TSP - biopsy

CD 3 - pan T cell marker

Grains = HTLV-I tax RNA

in situ - hybridization

HAM/TSP - autopsy

Case 1

Grains = HTLV-I tax RNA
Red = GFAP

in situ - hybridization

Case 2

Grains = HTLV-I tax DNA
Brown = GFAP

in situ - PCR
HTLV-I specific CTL in HAM/TSP Spinal cord autopsy:

HAM/TSP spinal cord parenchyma

HAM/TSP spinal cord meninges

HTLV-I
Tax11-19
tetramer (red)

Eiji Matsurra
Spinal Cord Atrophy in HAM/TSP and Correlation with CSF Immunophenotyping

Cervical and thoracic cord atrophy in multiple sclerosis phenotypes: Quantification and correlation with clinical disability

Asymptomatic Carrier n = 17
Healthy Volunteer n = 24
HAM/TSP n = 45
Increased disease duration, EDSS, and IPEC are associated with decrease in thoracic spinal cord cross sectional area.

Functional disability scales

- **Disease Duration**
 - Longer disease duration
 - Thinner
 - $p=0.035$

- **EDSS**
 - Increasing mobility aid
 - Decrease in SC CSA (T4-9 mm2)
 - $p=0.009$

- **IPEC**
 - Increasing disability
 - Decrease in SC CSA (T4-9 mm2)
 - $p=0.031$
Higher HTLV-1 Proviral load correlates with thinner spinal cord in HTLV-1 infection

Decrease in spinal cord cross sectional area associated with increased CD8+ T cells in the CSF

Thoracic cord cross section area vs. CD8+ T cells in CSF

Asymptomatic carrier

HAM/TSP

CSF HTLV-1 proviral load (%) vs. T4-9, CSA average (mm²)

$P = 0.005$

SC CSA (T4-9, mm²) vs. CD8+ T cell frequency

$P = 0.039$
Disease progression in HAM/TSP

- First signs of disease can occur months to years after infection
- Progression of disease can occur slowly or rapidly

Yoshihisa Yamano, Tamoo Sato; Frontiers in Microbiology, 2012
HAM/TSP - presented to NIH with an 8 year history of weakness in left leg, then dragging both feet. Repeated falls prompted medical evaluation and use of cane 2 years before the first scan at “Month 0”. Little or no clinical progression since then.
HAM/TSP - Patient noticed weakness in his legs as he worked on construction sites 7 months before “Month 0” scan. Between month 0 and month 7 patient progressed from using cane to being dependent on a wheelchair for all mobility. Rapid clinical progression seen.
Hypothesis: The neuroinflammatory process in the thoracic cord causes thoracic degeneration and retrograde axon degeneration (explaining no upper body involvement in HAM/TSP)
Summary
(Neuroimmunology of HAM/TSP)

Pathology:
Increased CD8+ T cells in lesions

Immunology:
Increased CD8+ T cells in periphery and CSF
Expanded CD8+ TCRB

Clinical:
Spinal cord atrophy associated with
increase in CD8+ T cells
Research of rare diseases
(HTLV-I – HAM/TSP)
(20 million people worldwide infected: how can a virus cause disease in only a subset of infected individuals?)

can inform understanding of common neurological disorders
(EBV- Multiple Sclerosis)
(95% of all people infected with EBV: how can a virus cause disease in only a subset of infected individuals?)
Viral Immunology Section:
Yoshimi Akahata
Maria Chiara Monaco
Stacey Piotrowski
Will Frazier
Mary Alice Allnutt
Abaigael Donaldson
Emily Stack
Maddy Drucker
Emily Leibovitch
Nyater Ngouth
Michelle Pleet
Steve Jacobson

Translational Neuroradiology Section
Daniel Reich
Amanda Lee
Govind Bhagavatheeswaran (Nair)

Neuroimmunology Clinic
Maria Gaitan
Joan Ohayon
Anita Fletcher
Arshe Moss
Mauricio Campillay
Frances Andrada
Jennifer Dwyer

Experimental Immunotherapeutics Unit
Irene Cortese
Sara Zahraeifard
Poorva Jain

Marmoset MRI
Afonso Silva

Bioinformatics
Kory Johnson
Rose Peterson

Wistar Institute
Samantha Soldan
Paul Liberman