
WEBINARIO

Introducción a R para ciencia de datos en salud

25 oct 2023, 8:00 (Brasília), 12:00 (Londres),

13:00 (Ciudad del Cabo),

17:00 (Dhaka)

Housekeeping

- Firstly, this session is being recorded. The recording will be shared in the coming weeks on The Global Health Network platform.
- Due to the number of participants your microphones have been disabled.
- Please use the Chat function to introduce yourself or to report any technical issues that you may be experiencing.
- Please use the Q&A function (located in the toolbar at the bottom of the Zoom window) to post your comments or questions.
- Simultaneous translation will be provided into Spanish and Portuguese and English. Navigate to the toolbar, click on Language Interpretation and select your desired language input.

Agenda

12.00-12.10 - Welcome

12.10-12.30 - Overview of R programming language and its use in research, Miss Aashna Uppal

- Benefits and possibilities for using R for health research projects
- Live demonstration of R and RStudio

12.30-13.15 - Presentations from health data science project teams that are using R

- Analysis of stunting in Bangladesh, a case study of presenting findings in R. Mr Md. Sojibul Islam
- Using R to support data preparation and visualisation for a research study in Brazil. Dr Soraida Aguilar
- User-Centred Dashboards for COVID-19 Trends in Africa. Dr Frank Kagoro

13.15-13.30 - Question and Answers

Spotlight on R

The Global Health Data Science community hub has developed Spotlight on: R for Health Data Research which brings together freely available and helpful educational materials tailored to beginners in R for health data science.

This resource covers fundamental R concepts, data manipulation, analysis techniques and data visualisation, along with specialised packages and techniques employed in health research.

It is aimed at students, researchers, health care professionals or anyone who is interested in learning R programming.

Webinar: Getting Started with R for Health Data Science is a companion session to provide an opportunity for attendees to learn more about R through instructional presentations and case study examples

Miss Aashna Uppal

DPhil Student, The Global Health Network, Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford

Presentation

- Overview of the R programming language and its use in research
- Live demonstration of R and RStudio

Overview of R and its use in research

Aashna Uppal

Table of contents

Introduction

What is R? What is RStudio?

Possibilities

What kinds of outputs are possible with R?

02

R versus

How does R compare to other languages/ software?

04

Demonstration

A simple data visualization in RStudio

01 Introduction

What is R? What is RStudio?

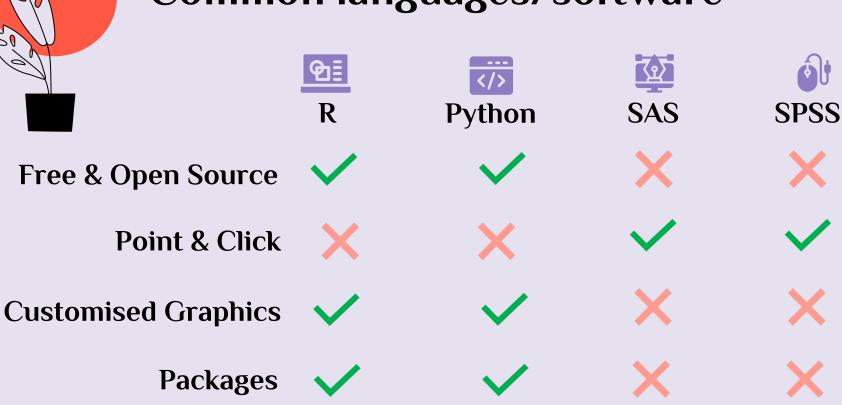
R & RStudio

What is R & RStudio?

- R is a programming language
- RStudio is an Graphical User Interface (GUI), which is a fancy way of saying that you use RStudio to write code
- Think of it this way: R is the writing, RStudio is the notebook
- R is very powerful for statistical analysis and epidemiology, and it's free to use!

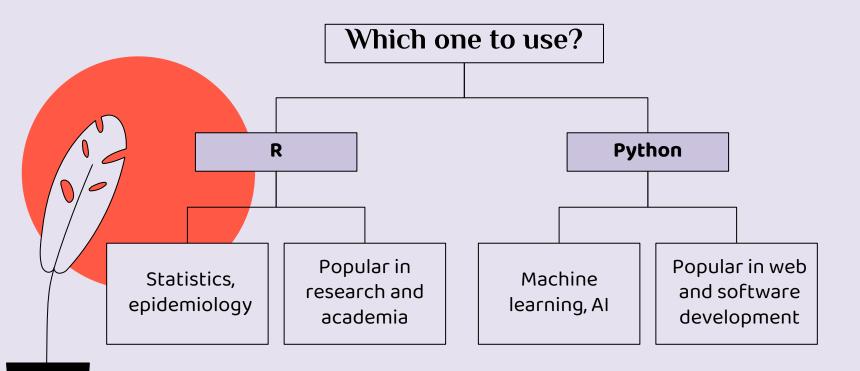
02 R versus

How does R compare to other languages/ software?



What are languages and software?

Languages are used for programming or creating software. **Software** are tools that help perform tasks or operations on a computer.



Common languages/software

R versus Python

03 Possibilities

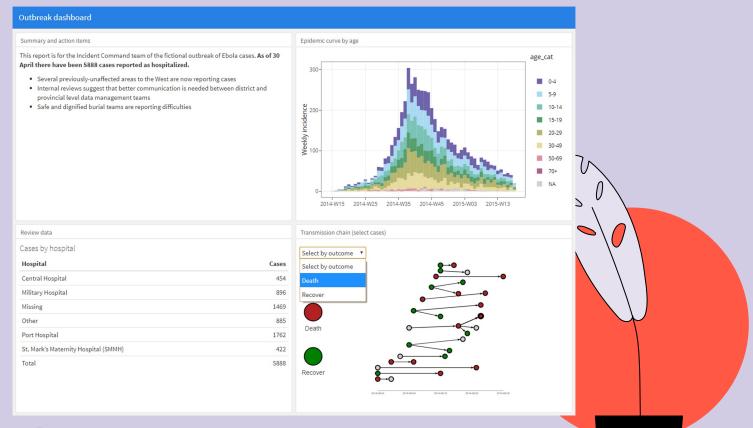
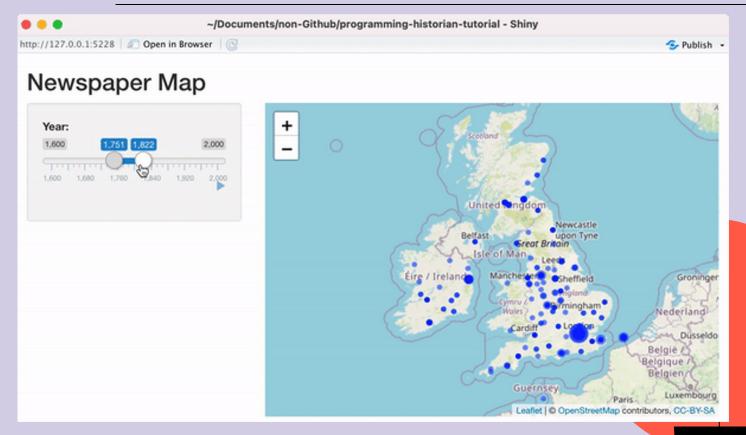

What kinds of outputs are possible with R?

Table 1. Baseline characteristics of 686 patients enrolled in the German Breast Cancer Study Group between 1984 a	nd
1989	


Variable	Overall	Placebo	Treated
No.	686	440	246
Age, years (mean (SD))	53.1 (10.1)	51.1 (10.0)	56.6 (9.4)
Postmenopausal	396 (57.7)	209 (47.5)	187 (76.0)
Tumor size, mm (mean (SD)	29.3 (14.3)	29.6 (14.4)	28.8 (14.1)
Tumor grade			
1	81 (11.8)	48 (10.9)	33 (13.4)
2	444 (64.7)	281 (63.9)	163 (66.3)
3	161 (23.5)	111 (25.2)	50 (20.3)
Positive lymph nodes, (n)	5.0 (5.5)	4.9 (5.6)	5.1 (5.3)
Progesterone receptors, fmol/L (median [IQR])	32.5 [7.0, 131.8]	32.0 [7.0, 130.0]	35.0 [7.2, 133.0]
Estrogen receptors, fmol/L (median [IQR])	36.0 [8.0, 114.0]	32.0 [8.0, 92.2]	46.0 [9.0, 182.5]

Numbers are No. (%) unless otherwise noted. SD = standard deviation, fmol/L = femtomole per liter, IQR = interquartile range

Publication Quality Tables

Dashboards

Interactive Webpages

Demonstration

A simple data visualization in RStudio

Mr Md Sojibul Islam

Research Assistant, Non-Communicable Diseases and Nutrition Research Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b)

Presentation

Analysis of stunting in Bangladesh, a case study of presenting findings in R

Reduction of the prevalence of stunting among children in Bangladesh and attribution of socio-demographic characteristics (2004-2017)

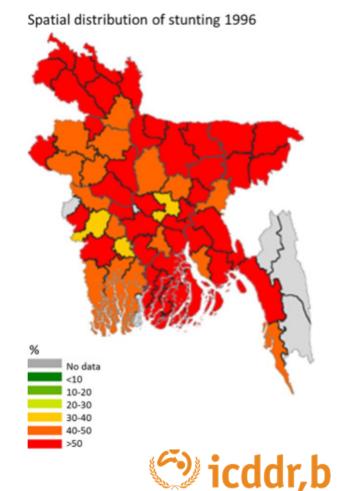
A case study of presenting findings in R programming language

Spotlight on R

Presented By
Md. Sojibul Islam
Research Assistant, Non-communicable Disease
Nutrition Research Division, icddr,b

Outline

- Background of the problems
- Why R programming language
- Objectives
- Methodology
- Presenting findings in R
 - Univariate analysis
 - Bivariate analysis
 - Modeling
- Conclusion



Background

Malnutrition is a major public health issue in developing countries.

According to UNICEF, 419 million children under 5 years old around the world are affected by stunting.

- Stunting is a condition that results from chronic malnutrition in early childhood, typically before
 the age of two. It is characterized by low height-for-age, reflecting a failure to reach one's full
 growth potential.
- This high prevalence of stunting in Asia is due to a variety of factors, including, poverty, food insecurity, and limited access to healthcare.

Why R programming

- R is a programming language
- R is very powerful for statistical analysis and epidemiology, and it's free to use! You can use it to create:
 - □ Dashboards
 - ☐ Automated outbreak and situational analysis reports
 - ☐ Publication quality tables and figures

Objectives

Main Objective

The main objective is to present different statistical analysis about stunting status in Bangladesh in a smooth way by using application of modern packages in R Programming.

Specific Objectives

To find the reduction of childhood stunting prevalence in Bangladesh.

To identify the association between socio-demographic factor and stunting status in Bangladesh.

To determine potential socio-demographic factors affecting childhood stunting in Bangladesh.

Dataset for the case study: Bangladesh Demography and Health Survey

The Bangladesh Demographic and Health Survey (BDHS) is a vital data collection effort that has been conducted periodically in Bangladesh over the past few decades. This comprehensive survey serves as a crucial resource for policymakers, researchers, and development organizations, providing valuable insights into various aspects of demographic and health-related information.

This case study provides an overview of the combine demographic and health census data collected in Bangladesh over the past two decades, specifically in the years 2004, 2007, 2011, 2014, and 2017.

Utilizing the large dataset, we will now proceed to conduct some statistical analysis by employing R to generate tables and insights.

Variables

Response Variable

Stunting Status variable have two categories:

Stunted (HAZ < -2)

Not Stunted (HAZ >= -2)

Socio-Demographic Factor

Age [Children Age in Month's]

Sex

Male

Female

Place of Residence

Rural

Urban

Mother's Education

No Education

Incomplete Primary

Complete Primary

Incomplete Secondary

Complete Secondary

Higher Education

Data analysis using R language

Analysis	Statistical technique	Use of R library
Univariate analysis	 Descriptive statistics for numerical variables Frequency Distribution table for categorical variables 	library(tidyverse) library(gtsummary)
Bi-varaite analysis	Cross tabulationChi square testT test	library(tidyverse) library(gtsummary)
Multivariate Analysis	Logistic regressionForest plot	Library(arm) Library(forestmodels)

Tools and Techniques

R Programming Language (Version: 4.2.1)

Review Our Recently Published Dementia Paper

And intend to generate analysis tables and graphs as outlined below in our dementia research paper, aligning with our research objectives.

Prevalence of dementia among older age people and variation across different sociodemographic characteristics: a cross-sectional study in Bangladesh

Aliya Naheed, ** Maliha Hakim, * Md Saimul Islam, * Md Badrul Islam, * Eugene Y. H. Tang, * Abdul Alim Prodhan, * Mohammad Robed Amin, * Blossom C. M. Stephan, * Oran Ovazi Deen Mohammad * Ovazi Dee

^aInitiative for Non Communicable Diseases, Health Systems and Population Studies Division, icddr,b, Mohakhali, Dhaka, 1000, Bangladesh

^bNational Institute of Neurosciences & Hospital, Dhaka, 1207, Bangladesh

^cLaboratory Science and Services Division, icddr.b, Mohakhali, Dhaka, 1000, Bangladesh

depopulation Health Sciences Institute, Newcastle University, UK

⁶Non Communicable Disease Control Program, Directorate General of Health Services, Dhaka, 1212, Bangladesh

Department of Medicine, Dhaka Medical College and Hospital, Dhaka, 1000, Bangladesh

9Institute of Mental Health, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK

^hDementia Centre of Excellence, Curtin enAble Institute, Curtin University, Perth, Western Australia, Australia

Summary

Background Dementia is a significant global health issue, particularly for low-income and middle-income countries which majorly contribute to the dementia cases reported globally (67%). We estimated the prevalence of dementia among older people in Bangladesh and compared the estimate across different sociodemographic characteristics and divisions.

Methods A cross-sectional study was conducted in 2019 among individuals aged 60 years or older in seven daministrative divisions in Bangladesh. Equal numbers of male and female participants were recruited from each division through a multi-stage random sampling technique. Recruitment was proportionally distributed in urban and rural areas in each division. Following consent, the Mini Mental State Examination (MMSE) was performed on all participants. Dementia was defined as an MMSE score of 240 tot of 30, Dato an age, sex, education, marital status, occupation, socioeconomic status, and type of community (urban or rural) were obtained using a structured questionnaire to compare the prevalence of dementia across different sociodemographic characteristics.

Findings Between January and December 2019, 2795 individuals were recruited including −400 from each of the seven administrative divisions. The mean age was 67 years (SD: 7), 68% were from rural areas and 51% were female. The prevalence of dementia was 8.0% (95% CE: 7.0–8.5%) with variations across age, exc, education, martial status, occupation, and division. No variations in prevalence were observed across urban/rural locations or socioeconomic status. After adjusting for age, sex, education, occupation and marints status, the observed so of dementia was two times higher in females than males (OR: 2.15, 95% CE: 1.43–3.28); nine times higher in people aged ≥90 years than people aged 60–69 years (OR: 9.62, 95% CE: 4.79–19.13), and three times higher in people with no education compared to those who had completed primary school (OR: 3.10, 95% CE: 1.95–5.17).

Interpretations The prevalence of dementia is high in Bangladesh and varies across sociodemographic characteristics with a higher prevalence among females, older people, and people with no education. There is an urgent need to identify the key risk factors for dementia in developing countries, such as Bangladesh, to inform the development of context-relevant risk reduction and prevention strategies.

Variables	Total = 2795	With dementia (MMSE score <24)		Without dementia (MMSE score ≥24)		P-value ^b
		n = 223	%	n = 2573	%	
Gender						
Male	1369	57	4.2	1312	95.8	P < 0.00
Female	1426	166	11.6	1260	88.4	
Age group						
60-64 y	1183	59	5.0	1124	95.0	P < 0.00
65-69 y	699	42	6.0	657	94.0	
70-74 y	434	47	10.8	387	89.2	
75-79 y	261	31	11.9	230	88.1	
80-84 y	114	17	14.9	97	85.1	
85-89	60	9	15.0	51	85.0	
90-115	44	18	40.9	26	59.1	
Marital status						
Married	1642	80	4.9	1562	95.1	P < 0.00
Single*	1153	143	12.4	1010	87.6	
Education						
Completed priamry education	685	21	3.1	664	96.9	P < 0.00
Some education	939	56	6.0	883	94.0	
Never went to school	1171	146	12.5	1025	87.5	
Current engage in earning						
Yes	813	33	4.1	780	95.9	P < 0.00
No	1982	190	9.6	1792	90.4	
Place of residence						
Urban	896	70	7.8	826	92.2	0.824
Rural	1899	153	8.1	1746	91.9	
Socioeconomic status						
Lower	448	42	9.4	406	90.6	0.209
Lower middle	522	48	9.2	474	90.8	
Middle	646	41	6.3	605	93.7	
Upper middle	566	39	6.9	527	93.1	
Upper	613	53	8.6	560	91.4	
Division	013	33	0.0	300	31.4	
Rajshahi	409	59	14.4	350	85.6	P < 0.00
Rangpur	409	48	11.7	361	88.3	1 4 0.00
Khulna	409	32	7.8	377	92.2	
Barisal	409	30	7.3	379	92.7	
Chattogram	341	23	6.7	318	93.3	
Sylhet	409	19	4.6	390	95.4	
Sylhet Dhaka	409	19	2.9	390		
Unaka	409	12	2.9	397	97.1	

Table 2: Prevalence of dementia across socio-demographic characteristics, type of community and divisions

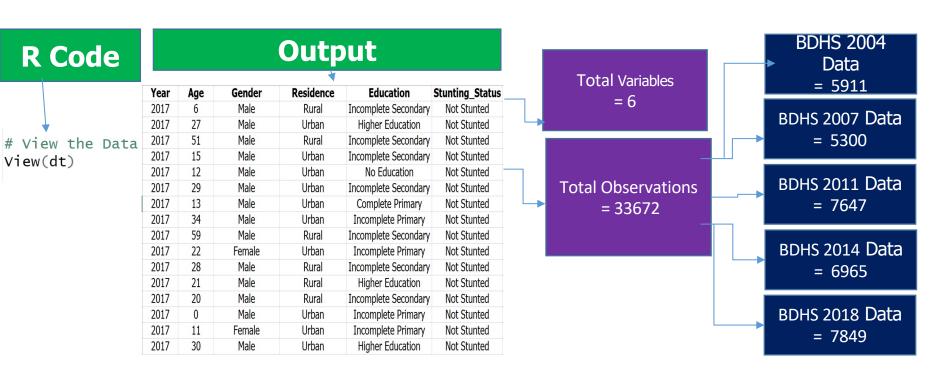
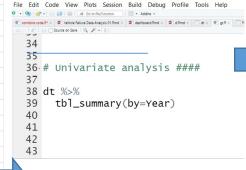

Variable	N	Odds ratio*		р
Sex		-		
Male	1369	ė.	Reference	
Female	1426	-	2.15 (1.43, 3.28)	< 0.001
Age				
60-69 y	1882	•	Reference	
70-79 y	695	•	2.06 (1.49, 2.85)	< 0.001
80 -89y	174	-	2.94 (1.78, 4.73)	< 0.001
90-115 y	44	-	9.62 (4.79, 19.13)	< 0.001
Education				
Completed priamry education	685		Reference	
Some education	939	+	1.50 (0.90, 2.60)	0.1
Never went to school	1171	- ■-	3.10 (1.95, 5.17)	< 0.001
Marital_status				
Married	1642	.	Reference	
Single	1153	-	1.31 (0.92, 1.88)	0.1
Occupation				
Yes	813	•	Reference	
No	1982	.	1.19 (0.78, 1.85)	0.4

Fig. 3: Factors associated with and without dementia of older people (*Adjusted odds ratio with 95% Cl.).

1 2 5 10

Preview Our Data Set

Univariate analysis in R


Univariate Analysis by Using R

Data

R Code

Objectives 01: To find the reduction of childhood stunting prevalence in Bangladesh.

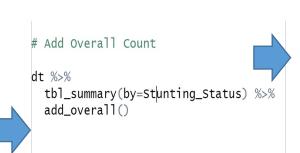
Year	Age	Gender	Residence	Education	Stunting_Status
2017	6	Male	Rural	Incomplete Secondary	Not Stunted
2017	27	Male	Urban	Higher Education	Not Stunted
2017	51	Male	Rural	Incomplete Secondary	Not Stunted
2017	15	Male	Urban	Incomplete Secondary	Not Stunted
2017	12	Male	Urban	No Education	Not Stunted
2017	29	Male	Urban	Incomplete Secondary	Not Stunted
2017	13	Male	Urban	Complete Primary	Not Stunted
2017	34	Male	Urban	Incomplete Primary	Not Stunted
2017	59	Male	Rural	Incomplete Secondary	Not Stunted
2017	22	Female	Urban	Incomplete Primary	Not Stunted
2017	28	Male	Rural	Incomplete Secondary	Not Stunted
2017	21	Male	Rural	Higher Education	Not Stunted
2017	20	Male	Rural	Incomplete Secondary	Not Stunted
2017	0	Male	Urban	Incomplete Primary	Not Stunted
2017	11	Female	Urban	Incomplete Primary	Not Stunted
2017	30	Male	Urban	Higher Education	Not Stunted

Output

Characteristic	2004, N = 5,911	2007 , N = 5,300 ¹	2011 , N = 7,647	2014 , N = 6,965	2017 , N = 7,849
Age	29 (14, 44)	29 (15, 44)	31 (15, 46)	30 (14, 45)	28 (13, 44)
Gender					
Female	413 (7.0%)	482 (9.1%)	601 (7.9%)	649 (9.3%)	979 (12%)
Male	5,498 (93%)	4,818 (91%)	7,046 (92%)	6,316 (91%)	6,870 (88%)
Residence					
Rural	4,146 (70%)	3,450 (65%)	5,305 (69%)	4,777 (69%)	5,168 (66%)
Urban	1,765 (30%)	1,850 (35%)	2,342 (31%)	2,188 (31%)	2,681 (34%)
Education					
Complete Primary	585 (9.9%)	506 (9.6%)	974 (13%)	829 (12%)	865 (11%)
Complete Secondary	142 (2.4%)	359 (6.8%)	426 (5.6%)	457 (6.6%)	396 (5.0%)
Higher Education	354 (6.0%)	418 (7.9%)	608 (8.0%)	736 (11%)	1,303 (17%)
Incomplete Primary	1,275 (22%)	1,136 (22%)	1,356 (18%)	1,105 (16%)	1,411 (18%)
Incomplete Secondary	1,446 (24%)	1,441 (27%)	2,834 (37%)	2,762 (40%)	3,313 (42%)
No Education	2,109 (36%)	1,420 (27%)	1,449 (19%)	1,076 (15%)	561 (7.1%)
Unknown	0	20	0	0	0
Stunting_Status					
Not Stunted	2,896 (49%)	3,017 (57%)	4,523 (59%)	4,398 (63%)	5,365 (68%)
Stunted	3,015 (51%)	2,283 (43%)	3.124 (41%)	2,567 (37%)	2,484 (32%)

Bivariate analysis in R

Bivariate Analysis by Using R


Data

R Code

Output

Objectives 02: To identify the association between socio-demographic factor and stunting status in Bangladesh.

Year	Age	Gender	Residence	Education	Stunting_Status
2017	6	Male	Rural	Incomplete Secondary	Not Stunted
2017	27	Male	Urban	Higher Education	Not Stunted
2017	51	Male	Rural	Incomplete Secondary	Not Stunted
2017	15	Male	Urban	Incomplete Secondary	Not Stunted
2017	12	Male	Urban	No Education	Not Stunted
2017	29	Male	Urban	Incomplete Secondary	Not Stunted
2017	13	Male	Urban	Complete Primary	Not Stunted
2017	34	Male	Urban	Incomplete Primary	Not Stunted
2017	59	Male	Rural	Incomplete Secondary	Not Stunted
2017	22	Female	Urban	Incomplete Primary	Not Stunted
2017	28	Male	Rural	Incomplete Secondary	Not Stunted
2017	21	Male	Rural	Higher Education	Not Stunted
2017	20	Male	Rural	Incomplete Secondary	Not Stunted
2017	0	Male	Urban	Incomplete Primary	Not Stunted
2017	11	Female	Urban	Incomplete Primary	Not Stunted
2017	30	Male	Urban	Higher Education	Not Stunted

Characteristic	Overall , N = 33,672	Not Stunted , N = 20,199	Stunted , N = 13,473
Year			
2004	5,911 (18%)	2,896 (14%)	3,015 (22%)
2007	5,300 (16%)	3,017 (15%)	2,283 (17%)
2011	7,647 (23%)	4,523 (22%)	3,124 (23%)
2014	6,965 (21%)	4,398 (22%)	2,567 (19%)
2017	7,849 (23%)	5,365 (27%)	2,484 (18%)
Age	29 (14, 44)	26 (11, 44)	33 (20, 45)
Gender			
Female	3,124 (9.3%)	1,988 (9.8%)	1,136 (8.4%)
Male	30,548 (91%)	18,211 (90%)	12,337 (92%)
Residence			
Rural	22,846 (68%)	13,104 (65%)	9,742 (72%)
Urban	10,826 (32%)	7,095 (35%)	3,731 (28%)
Education			
Complete Primary	3,759 (11%)	2,062 (10%)	1,697 (13%)
Complete Secondary	1,780 (5.3%)	1,334 (6.6%)	446 (3.3%)
Higher Education	3,419 (10%)	2,809 (14%)	610 (4.5%)
Incomplete Primary	6,283 (19%)	3,295 (16%)	2,988 (22%)
Incomplete Secondary	11,796 (35%)	7,662 (38%)	4,134 (31%)
No Education	6,615 (20%)	3,027 (15%)	3,588 (27%)
Unknown	20	10	10
n (%); Median (IQR)			

Bivariate Analysis by Using R

R Code

```
# Add P Values
dt %>%
  tbl_summary(by=Stunting_Status) %>%
  add_overall() %>%
_add_p()
```

Characteristic	Overall , N = 33,672	Not Stunted , N = 20,199	Stunted , N = 13,473	p-value
Year				< 0.00
2004	5,911 (18%)	2,896 (14%)	3,015 (22%)	
2007	5,300 (16%)	3,017 (15%)	2,283 (17%)	
2011	7,647 (23%)	4,523 (22%)	3,124 (23%)	
2014	6,965 (21%)	4,398 (22%)	2,567 (19%)	
2017	7,849 (23%)	5,365 (27%)	2,484 (18%)	
Age	29 (14, 44)	26 (11, 44)	33 (20, 45)	<0.00
Gender				<0.00
Female	3,124 (9.3%)	1,988 (9.8%)	1,136 (8.4%)	
Male	30,548 (91%)	18,211 (90%)	12,337 (92%)	
Residence				<0.00
Rural	22,846 (68%)	13,104 (65%)	9,742 (72%)	
Urban	10,826 (32%)	7,095 (35%)	3,731 (28%)	
Education				<0.00
Complete Primary	3,759 (11%)	2,062 (10%)	1,697 (13%)	
Complete Secondary	1,780 (5.3%)	1,334 (6.6%)	446 (3.3%)	
Higher Education	3,419 (10%)	2,809 (14%)	610 (4.5%)	
Incomplete Primary	6,283 (19%)	3,295 (16%)	2,988 (22%)	
Incomplete Secondary	11,796 (35%)	7,662 (38%)	4,134 (31%)	
No Education	6,615 (20%)	3,027 (15%)	3,588 (27%)	
Unknown	20	10	10	

² Pearson's Chi-squared test; Wilcoxon rank sum test

Bivariate Analysis by Using R

R Code

```
# add event, C.I, and Labeling
dt %>%
  tbl_summary(by=Stunting_Status) %>%
 add_p() %>%
 add_overall() %>%
  add_n() %>%
  add_ci() %>%
  add_stat_label(
    label = all_continuous()~"Median (IQR)"
```

Characteristic	N	Overall , N = 33,672	95% CI	Not Stunted , N = 20,199	95% CI	Stunted , N = 13,473	95% CI	p-value
Year, n (%)	33,672							<0.001
2004		5,911 (18%)	17%, 18%	2,896 (14%)	14%, 15%	3,015 (22%)	22%, 23%	
2007		5,300 (16%)	15%, 16%	3,017 (15%)	14%, 15%	2,283 (17%)	16%, 18%	
2011		7,647 (23%)	22%, 23%	4,523 (22%)	22%, 23%	3,124 (23%)	22%, 24%	
2014		6,965 (21%)	20%, 21%	4,398 (22%)	21%, 22%	2,567 (19%)	18%, 20%	
2017		7,849 (23%)	23%, 24%	5,365 (27%)	26%, 27%	2,484 (18%)	18%, 19%	
Age, Median (IQR)	33,672	29 (14, 44)		26 (11, 44)	27, 28	33 (20, 45)	32, 33	<0.001
Gender, n (%)	33,672							<0.001
Female		3,124 (9.3%)	9.0%, 9.6%	1,988 (9.8%)	9.4%, 10%	1,136 (8.4%)	8.0%, 8.9%	
Male		30,548 (91%)	90%, 91%	18,211 (90%)	90%, 91%	12,337 (92%)	91%, 92%	
Residence, n (%)	33,672							< 0.001
Rural		22,846 (68%)	67%, 68%	13,104 (65%)	64%, 66%	9,742 (72%)	72%, 73%	
Urban		10,826 (32%)	32%, 33%	7,095 (35%)	34%, 36%	3,731 (28%)	27%, 28%	
Education, n (%)	33,652							<0.001
Complete Primary		3,759 (11%)	11%, 12%	2,062 (10%)	9.8%, 11%	1,697 (13%)	12%, 13%	
Complete Secondary		1,780 (5.3%)	5.1%, 5.5%	1,334 (6.6%)	6.3%, 7.0%	446 (3.3%)	3.0%, 3.6%	
Higher Education		3,419 (10%)	9.8%, 10%	2,809 (14%)	13%, 14%	610 (4.5%)	4.2%, 4.9%	
Incomplete Primary		6,283 (19%)	18%, 19%	3,295 (16%)	16%, 17%	2,988 (22%)	21%, 23%	
Incomplete Secondary		11,796 (35%)	35%, 36%	7,662 (38%)	37%, 39%	4,134 (31%)	30%, 31%	
No Education		6,615 (20%)	19%, 20%	3,027 (15%)	15%, 15%	3,588 (27%)	26%, 27%	
Unknown		20		10		10		

CI = Confidence Interval

² Pearson's Chi-squared test; Wilcoxon rank sum test

Bivariate Analysis by Using R

R Code

```
dt %>%
  tbl_summary(
    by = Stunting_Status,
    statistic = Age ~ "{mean} ({sd})",
    label = list(Age ~ "Age in Months",
                 Gender ~ "Sex of the Household Head".
                 Education ~"Mother's Education"
    # missing = no,
    missing_text = "Missing Values",
    type = list(Education="categorical",
                 Residence= "categorical").
    sort = everything() ~ "frequency",
    percent = "col",
    digits = list (all_categorical() ~2,
                   all_continuous() ~1)) %>%
  add_p() %>%
  add_ci() %>%
  add_stat_label(
    label = all_continuous()~"Mean (SD)"
  ) %>%
  bold_p(t=0.05) \%>\%
  bold_labels()
```

Characteristic	Not Stunted , N = 20,199	95% CI	Stunted , N = 13,473	95% CI	p-value ²
Year, n (%)					<0.001
2017	5,365.00 (26.56%)	26%, 27%	2,484.00 (18.44%)	18%, 19%	
2011	4,523.00 (22.39%)	22%, 23%	3,124.00 (23.19%)	22%, 24%	
2014	4,398.00 (21.77%)	21%, 22%	2,567.00 (19.05%)	18%, 20%	
2004	2,896.00 (14.34%)	14%, 15%	3,015.00 (22.38%)	22%, 23%	
2007	3,017.00 (14.94%)	14%, 15%	2,283.00 (16.95%)	16%, 18%	
Age in Months, Mean (SD)	27.5 (18.0)	27, 28	32.4 (15.6)	32, 33	<0.001
Sex of the Household Head, n (%)					<0.001
Male	18,211.00 (90.16%)	90%, 91%	12,337.00 (91.57%)	91%, 92%	
Female	1,988.00 (9.84%)	9.4%, 10%	1,136.00 (8.43%)	8.0%, 8.9%	
Residence, n (%)					<0.001
Rural	13,104.00 (64.87%)	64%, 66%	9,742.00 (72.31%)	72%, 73%	
Urban	7,095.00 (35.13%)	34%, 36%	3,731.00 (27.69%)	27%, 28%	
Mother's Education, n (%)					<0.001
Incomplete Secondary	7,662.00 (37.95%)	37%, 39%	4,134.00 (30.71%)	30%, 31%	
No Education	3,027.00 (14.99%)	15%, 15%	3,588.00 (26.65%)	26%, 27%	
Incomplete Primary	3,295.00 (16.32%)	16%, 17%	2,988.00 (22.19%)	21%, 23%	
Complete Primary	2,062.00 (10.21%)	9.8%, 11%	1,697.00 (12.60%)	12%, 13%	
Higher Education	2,809.00 (13.91%)	13%, 14%	610.00 (4.53%)	4.2%, 4.9%	
Complete Secondary	1,334.00 (6.61%)	6.3%, 7.0%	446.00 (3.31%)	3.0%, 3.6%	
Missing Values	10		10		

CI = Confidence Interval

² Pearson's Chi-squared test; Wilcoxon rank sum test

Multivariate Analysis by Using R

R Code

Objectives 03: To determine potential socio-demographic factors affecting childhood stunting in Bangladesh.

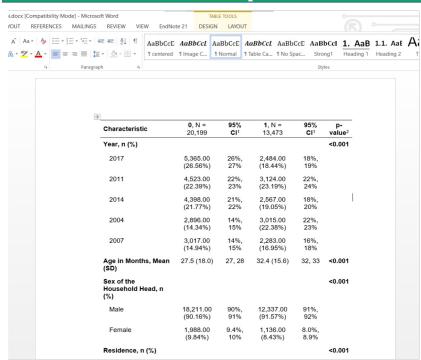
Year	Age	Gender	Residence	Education	Stunting_Status
2017	6	Male	Rural	Incomplete Secondary	Not Stunted
2017	27	Male	Urban	Higher Education	Not Stunted
2017	51	Male	Rural	Incomplete Secondary	Not Stunted
2017	15	Male	Urban	Incomplete Secondary	Not Stunted
2017	12	Male	Urban	No Education	Not Stunted
2017	29	Male	Urban	Incomplete Secondary	Not Stunted
2017	13	Male	Urban	Complete Primary	Not Stunted
2017	34	Male	Urban	Incomplete Primary	Not Stunted
2017	59	Male	Rural	Incomplete Secondary	Not Stunted
2017	22	Female	Urban	Incomplete Primary	Not Stunted
2017	28	Male	Rural	Incomplete Secondary	Not Stunted
2017	21	Male	Rural	Higher Education	Not Stunted
2017	20	Male	Rural	Incomplete Secondary	Not Stunted
2017	0	Male	Urban	Incomplete Primary	Not Stunted
2017	11	Female	Urban	Incomplete Primary	Not Stunted
2017	30	Male	Urban	Higher Education	Not Stunted

Characteristic	OR ¹	95% CI	p-value			
Age	1.02	1.01, 1.02	<0.001			
Year						
2004	_	-				
2007	0.79	0.73, 0.85	<0.001			
2011	0.74	0.68, 0.79	<0.001			
2014	0.66	0.62, 0.71	<0.001			
2017	0.58	0.54, 0.62	<0.001			
Residence						
Rural	_	_				
Urban	0.81	0.77, 0.85	<0.001			
Gender						
Female	_	_				
Male	1.12	1.03, 1.21	0.005			
Education						
Complete Primary	_	_				
Complete Secondary	0.43	0.38, 0.49	<0.001			
Higher Education	0.30	0.27, 0.33	<0.001			
Incomplete Primary	1.08	1.00, 1.18	0.055			
Incomplete Secondary	0.69	0.64, 0.74	<0.001			
No Education	1.27	1.17, 1.38	<0.001			
OR = Odds Ratio, CI = Confidence Interval						

Multivariate Analysis by Using R

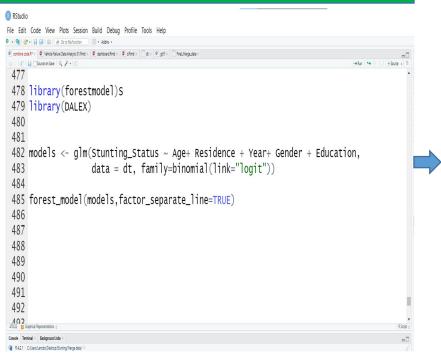
R Code

```
# Multivariate Modeling
glm(Stunting_Status ~ Age+ Residence + Year+ Gender + Education,
    data = dt, family = binomial) %>%
 tbl_regression(
    exponentiate=T
 ) %>%
  add_n()%>%
  add_significance_stars(
    hide_p = F, hide_se =F ,hide_ci = F) %>%
 # modify helpers
 modify_header(label="**Predictor**") %>%
 modify_caption("Table1. Cool Looking Table") %>%
  modify_footnote(
    ci= "CI= Credible Intervals are incredible:".
    abbreviation = T) %>%
  bold_p(t=0.05) \%>\%
  bold_labels() %>%
  italicize_levels()
```


Predictor	N	OR ^{1,2}	SE	95% CI ²	p-val
Age	33,652	1.02***	0.001	1.01, 1.02	<0.0
Residence	33,652				
Rural		_	_	_	
Urban		0.81***	0.026	0.77, 0.85	<0.0
Year	33,652				
2004		_	_	_	
2007		0.79***	0.039	0.73, 0.85	<0.0
2011		0.74***	0.036	0.68, 0.79	<0.0
2014		0.66***	0.038	0.62, 0.71	<0.0
2017		0.58***	0.038	0.54, 0.62	<0.0
Gender	33,652				
Female		_	_	_	
Male		1.12**	0.041	1.03, 1.21	0.00
Education	33,652				
Complete Primary		_	_	_	
Complete Secondary		0.43***	0.065	0.38, 0.49	<0.0
Higher Education		0.30***	0.056	0.27, 0.33	<0.0
Incomplete Primary		1.08	0.042	1.00, 1.18	0.05
Incomplete Secondary		0.69***	0.039	0.64, 0.74	<0.0
No Education		1.27***	0.042	1.17, 1.38	<0.0

Save Analysis Table by Using R

R Code


```
RStudio
File Edit Code View Plots Session Build Debug Profile Tools Help
V Q Go to file/function
💿 combine code.R* 🗴 🚭 Vehicle Failure Data Analysis 01.Rmd 🗴 😅 dashboard.Rmd 🗴 🚭 d.Rmd 🗴 🔲 dt 🗴 📵 gt.R 💉 🥌 Final_Merge_data 🗴
 🚞 🥒 📗 📄 Source on Save 🔍 🎢 🕶 📳
 114
 115
 116 # Save the Result in Word Document
 117
 118 library(flextable)
 119 bi %>%
 120
          as_flex_table() %>%
 121
          save_as_docx(path = "Models.docx")
 122
 123
```


Multivariate Analysis by Using R

R Code

Forest Plot Output

Variable	N	Odds ratio		р
Age	33652	•	1.02 (1.01, 1.02)	<0.001
Residence				
Rural	22831	•	Reference	
Urban	10821	-	0.81 (0.77, 0.85)	<0.001
Year				
2004	5911	•	Reference	
2007	5280	-	0.79 (0.73, 0.85)	<0.001
2011	7647		0.74 (0.68, 0.79)	<0.001
2014	6965	-	0.66 (0.62, 0.71)	<0.001
2017	7849	•	0.58 (0.54, 0.62)	<0.001
Gender				
Female	3124	•	Reference	
Male	30528	-	1.12 (1.03, 1.21)	0.005
Education				
Complete Primary	3759	•	Reference	
Complete Secondary	1780		0.43 (0.38, 0.49)	<0.001
Higher Education	3419	-	0.30 (0.27, 0.33)	<0.001
Incomplete Primary	6283		1.08 (1.00, 1.18)	0.057
Incomplete Secondary	11796	•	0.69 (0.64, 0.74)	<0.001
No Education	6615	-	1.27 (1.17, 1.38)	<0.001

Conclusion

- R programming language provides effective packages for epidemiological data analysis
- The univariate, bivariate and multivariate model can be performed in a tabular format with few effort of r pakages.

Dr Soraida Aguilar

Assistente de Pesquisa, Divisão de Pesquisa em Doenças Não Transmissíveis e Nutrição, Centro Internacional de Pesquisa em Doenças Diarreicas, Bangladesh (icddr,b)

Presentation

Using R to support data preparation and visualization for a research study in Brazil

Using R to support Data Analytics

Usando R para respaldar el Análisis de Datos

Soraida Agui

Agend a

Estudio **n 1 de**vestigación

De que estamos hablando

Preparació

03 de los

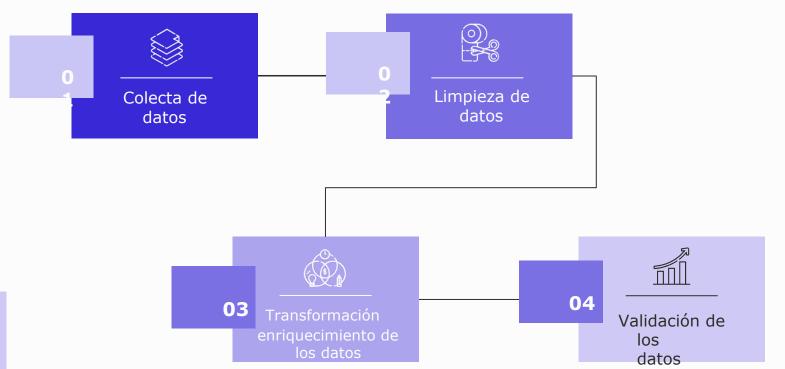
datos

Uniendo todos los conjuntos de datos

Flujo de trabajo **02 paep**aración de los datos

Pasos para preparar nuestros datos

Visualizació
04 de los
datos ataframes y figuras


Estudio de investigación

The impact of the first year of COVID-19 vaccination strategy in Brazil

Bajo revisión

Flujo de trabajo de preparación de datos


```
library(dplyr)
library(tidyverse)
library(ggplot2)
library(scales)
library(lubridate)
library(purrr)
library(pracma)
library(patchwork)
library(RColorBrewer)
library(broom)
library(tidymodels)
library(rms)
library(ggsci)
Sys.setlocale("LC_TIME", "English")
obitos <- read.csv("srag_adults_covid_hosp_2022-07-11.csv", header = TRUE, sep = ",", dec = ",")
vacinacao <- read.csv("vw vacc date state age dose 2022-02-02.csv", header = TRUE, sep = ",")
piramide_etaria <- read.csv2("df_population_city_sex.csv", sep = ",", header = TRUE)
df_ageSex_adjusted <- read.csv2("who_pop_std_rates.csv", sep = ",", header = TRUE)
```

Pasos 1-3 | Steps 1-3

- Hospitalizaciones y muertes hospitalarias por COVID-19 COVID-19 hospitalizations and in-hospital deaths
- Datos de vacunación Vaccine data
- Datos de Población por estado - por edad/sexo
 Population per state - per
- Datos de población ajustados

Age/Sex data

```
# Filtreing deaths and creating age group
data obitos <- obitos %>%
  mutate(state = SG_UF, data = date_desf, deaths = EVOLUCAO) %>%
  mutate(faixa_etaria = case_when(NU_IDADE_N < 10 ~ "0-9",
                                   NU_IDADE_N >= 10 \& NU_IDADE_N < 20 \sim "10-19"
                                   NU_IDADE_N >= 20 \& NU_IDADE_N < 50 \sim "20-49"
                                   NU_IDADE_N >= 50 \& NU_IDADE_N < 60 \sim "50-59"
                                   NU_IDADE_N >= 60 \& NU_IDADE_N < 70 \sim "60-69"
                                   TRUE ~ "70+")) %>%
  select(state, data, faixa_etaria, deaths) %>%
  group_by(data, faixa_etaria) %>%
  filter(deaths = "Death") %>%
  mutate(deaths = 1) %>%
  summarise(newDeaths = sum(deaths))
aux_1 <- data_obitos %>%
 spread(faixa_etaria, newDeaths) %>%
 replace(is.na(.),0) %>%
 mutate(^{60} = ^{20-49} + ^{50-59}),
         `>=60` = `60-69` + `70+`)
aux_1 < -aux_1[-c(1),]
aux_1$data = lubridate::ymd(aux_1$data)
aux_2 <- data.frame(data = seq(from = lubridate::ymd(as.Date(aux_1$data[1])),</pre>
                                to = lubridate::ymd(as.Date("2021/12/31")),
                                by = "day"), valor = 0)
aux_3 \leftarrow left_join(aux_2, aux_1, by = c("data"))
 replace(is.na(.),0)
aux_3 < -aux_3[,-c(2)]
```

Pasos 1-3 | Steps 1-3

- Hospitalizaciones y muertes hospitalarias por COVID-19 COVID-19 hospitalizations and in-hospital deaths
- Selección de Variables Variables selection
- Transformar y enriquecer los datos
 Transforming and enrich the data

nrenaration

```
data vacinacao <- vacinacao %>%
  filter(uf != "" & uf != "XX") %>%
 mutate(state = uf, data = data_aplicacao, faixa_etaria = idade_grupo) %>%
  select(state, data, faixa_etaria, total, vacina_dose) %>%
  group_by(data, faixa_etaria) %>%
  filter(vacina dose == "D1", faixa etaria != "0-4" & faixa etaria != "5-9" &
           faixa_etaria != "10-14" & faixa_etaria != "15-19" ) %>%
  summarise(vaccinated = sum(total))
aux_4 <- data_vacinacao %>%
 spread(faixa_etaria, vaccinated) %>%
replace(is.na(.),0)
aux_4\$data = lubridate::ymd(aux_4\$data)
aux_4$^20-49^ <- aux_4$^20-29^ + aux_4$^30-39^ + aux_4$^40-49^
aux_4$\`70+\` <- aux_4$\`70-79\` + aux_4$\`80+\`
aux_4$\cdo\ <- aux_4$\cdo\ + aux_4$\30-39\ + aux_4$\40-49\ + aux_4$\50-59\
aux_4 >=60 <- aux_4 60-69 + aux_4 70-79 + aux_4 80+
aux_4 <- aux_4 %>% select(data, "20-49", "50-59", "60-69", "70+", "<60", ">=60"
aux 4 <- as.data.frame(aux 4)
names(aux_4) <- c("data", "a1", "a2", "a3", "a4", "a5", "a6")
```

Pasos 1-3 | Steps 1-3

- Datos de vacunación Vaccine data
- Limpieza de los datos Clean data
- Transformar y enriquecer los datos
 Transforming and enrich the data

```
nrenaration
      dataset_completo <- dataset_joined %>% mutate(
        `cobertura_20-49` = `20-49_vac`/faixa$`20-49`,
        `cobertura_50-59` = `50-59_vac`/faixa$`50-59`,
        `cobertura 60-69` = `60-69 vac`/faixa$`60-69`.
        `cobertura_70+` = `70+_vac'/faixa$`70+`,
180
        `cobertura_<60` = `<60_vac`/faixa$`<60`,
181
        `cobertura >= 60` = `>= 60_vac`/faixa$`>= 60`,
182
183
        rate_{20-49} = 100000 * 20-49 / faixa 20-49 ,
        rate_50-59 = 100000*50-59^faixa^50-59,
        rate_60-69 = 100000* 60-69 / faixa 60-69,
        `rate_70+` = 100000*`70+`/faixa$`70+`,
        rate_{60} = 100000 * < 60 / faixa < < 60 ,
        rate >=60' = 100000*'>=60'/faixa$'>=60'.
 190
        'ageAdj_20-49' = 100000*('20-49'/faixa$'20-49')*
          (pop_ageAdjusted\$\20-49\\total_ageAdjusted[[1]]),
        'ageAdi_50-59' = 100000*('50-59'/faixa$'50-59')*
          (pop_ageAdjusted\$\`50-59\`/total_ageAdjusted[[1]]),
        'ageAdj_60-69' = 100000*'60-69'/faixa$'60-69'*
          (pop_ageAdjusted$`60-69`/total_ageAdjusted[[1]]).
 196
        `ageAdj_70+` = 100000*(`70+`/faixa$`70+`)*
          (pop_ageAdjusted$^70+\'/total_ageAdjusted[[1]]),
        `ageAdj_<60` = 100000*(`<60`/faixa$`<60`)*
198
          (pop_ageAdjusted$`<60`/total_ageAdjusted[[1]]),
200
        `ageAdj_>=60` = 100000*(`>=60`/faixa$`>=60`)*
          (pop_ageAdjusted\$`>=60\'/total_ageAdjusted[[1]])
```

Pasos 1-3 | Steps 1-3

 Enriqueciendo los datos: coberturas de vacunación, tasas de mortalidad, muertes ajustadas por edad Enriching the data: vaccination coverage, mortality rates, ageadjusted deaths

preparationObteniendo un conjunto de datos unificado | Getting a unified data set

```
# Joint all the data sets

224 conjunto_obitos_rate$faixa_etaria = conjunto_obitos$faixa_etaria

225 conjunto_vacina_doses$faixa_etaria = conjunto_obitos$faixa_etaria

226 conjunto_vacina_coverage$faixa_etaria = conjunto_obitos$faixa_etaria

227 conjunto_obitos_ageAdjusted$faixa_etaria = conjunto_obitos$faixa_etaria

228

229 join_1 <- left_join(conjunto_obitos, conjunto_obitos_ageAdjusted, by = c("data", "faixa_etaria"))

230 join_2 <- left_join(conjunto_vacina_doses, conjunto_vacina_coverage, by = c("data", "faixa_etaria"))

231 conjunto_dados <- left_join(join_1, join_2, by = c("data", "faixa_etaria"))

232 df_obitos <- left_join(conjunto_dados, conjunto_obitos_rate, by = c("data", "faixa_etaria"))

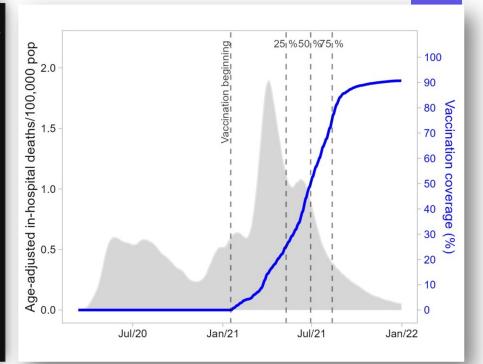
334

335 qf_opitos <- left_join(conjunto_dados, conjunto_obitos_rate, by = c("data", "faixa_etaria"))
```

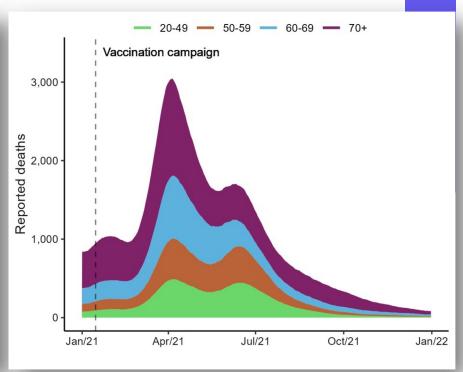
^	data ‡	faixa_etaria 🗘	deaths ‡	deaths_ageAdj [‡]	vacina 🕏	cobertura ‡	deaths_pop
438	2021-05-23	20-49	343	0.2336583125	9598103	0.09823391	0.351050953
439	2021-05-24	20-49	343	0.2336583125	9887947	0.10120039	0.351050953
440	2021-05-25	20-49	347	0.2363831908	10253243	0.10493909	0.355144842
441	2021-05-26	20-49	350	0.2384268495	10610579	0.10859632	0.358215259
442	2021-05-27	20-49	356	0.2425141669	11031985	0.11290930	0.364356092
443	2021-05-28	20-49	361	0.2459202648	11567970	0.11839495	0.369473452
444	2021-05-29	20-49	370	0.2520512409	11832747	0.12110487	0.378684702
445	2021-05-30	20-49	377	0.2568197779	11870780	0.12149413	0.385849007
446	2021-05-31	20-49	383	0.2609070953	12268110	0.12556069	0.391989840
447	2021-06-01	20-49	389	0.2649944127	12800006	0.13100450	0.398130673
448	2021-06-02	20-49	396	0.2697629497	13487786	0.13804374	0.405294978
449	2021-06-03	20-49	399	0.2718066084	13759615	0.14082583	0.408365395
450	2021-06-04	20-49	403	0.2745314867	14173804	0.14506494	0.412459287
450	2021-06-04	20-49	403	0.2745314867	14173804	0.14506494	0.412459287
							0.408365395
448	2021-06-02	20-49	396	0,2697629497	13487786	0.13804374	0.405294978

Visualización de los datos | Data

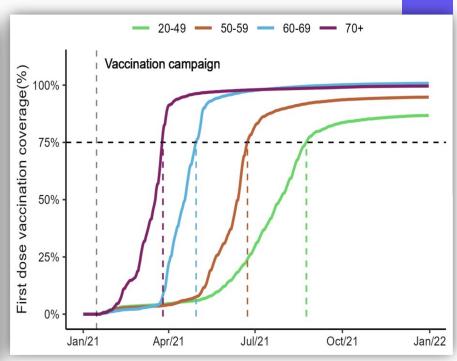
Visualization


Figures generation

```
c0 <- lubridate::ymd("2021-01-17") # Inicio da c10 <- df_filtro_brasil$data[which(df_filtro_b c20 <- df_filtro_brasil$data[which(df_filtro_b c25 <- df_filtro_brasil$data[which(df_filtro_b c30 <- df_filtro_brasil$data[which(df_filtro_b c40 <- df_filtro_brasil$data[which(df_filtro_b c50 <- df_filtro_brasil$data[which(df_filtro_b c60 <- df_filtro_brasil$data[which(df_filtro_b c70 <- df_filtro_brasil$data[which(df_filtro_b c70 <- df_filtro_brasil$data[which(df_filtro_b c80 <- df_filtro_brasil$data[which(df_filtro_b c80 <- df_filtro_brasil$data[which(df_filtro_b c90 <- df_filtro_b c90 <- df_filtro_b c90 <- df_filtro_brasil$data[which(df_filtro_b c90 <- df_filtro_b c90 <- df_filtro_brasil$data[which(df_filtro_b c90 <- df_filtro_b c90
```


```
pl <- df_filtro_brasil %>%
  ggplot() +
  geom_area(aes(x = data, y = deaths_ageAdj), color = "grav90", alpha = 0.2) +
  geom_line(aes(x = data, y = scaleFactor*cobertura),
            size = 1, color = "blue") +
  geom_vline(data = corte_cobertura_1, aes(xintercept = corte),
             linetype = "dashed", color = "grey5", alpha = 0.5) +
  geom_text(data = corte_cobertura_1,
            aes(x = lubridate::as_date(corte)-12, y = 1.8,
                label = c("Vaccination beginning", "", "", "")),
            color = "grey5", size = 3, alpha = 0.8, angle = 90)
  geom_text(data = corte_cobertura_1,
            aes(x = lubridate::as_date(corte)-1, y = 2.2,
                label = c("", "25 \%", "50 \%", "75 \%")),
            color = "grey5", size = 3, alpha = 0.8) +
  scale_y_continuous(sec.axis = sec_axis(~.*(100/scaleFactor),
                                         breaks = seq(0.100, by = 10).
                                         name = "Vaccination coverage (%)"),
                     breaks = seq(0,2.5, by = 0.5)) +
  scale_x_date(labels = date_format("%b/%y"), breaks = waiver()) +
  vlab("Age-adjusted in-hospital deaths/100,000 pop") + xlab("") +
  labs(subtitle = "") +
  theme light() +
  theme(axis.title.y.left = element_text(color = "grey8"),
        axis.text.y.left = element_text(color = "grey8"),
        axis.title.y.right = element_text(color = "blue"),
        axis.text.y.right = element_text(color = "blue"),
        axis.text.x = element_text(color = "grey8"),
        plot.background = element_rect(color = "white"),
        panel.grid.major = element_line(color = "white"),
        panel.grid.minor = element_line(color = "white"))
```

Figures generation


```
p1 <- df_filtro_brasil %>%
  ggplot() +
  geom_area(aes(x = data, y = deaths_ageAdj), color = "grav90", alpha = 0.2) +
  geom_line(aes(x = data, y = scaleFactor*cobertura),
            size = 1, color = "blue") +
  geom_vline(data = corte_cobertura_1, aes(xintercept = corte),
             linetype = "dashed", color = "grey5", alpha = 0.5) +
  geom_text(data = corte_cobertura_1,
            aes(x = lubridate::as_date(corte)-12, y = 1.8,
                label = c("Vaccination beginning", "", "", "")),
            color = "grey5", size = 3, alpha = 0.8, angle = 90)
  geom_text(data = corte_cobertura_1,
            aes(x = lubridate::as_date(corte)-1, y = 2.2,
                label = c("", "25 \%", "50 \%", "75 \%")),
            color = "grey5", size = 3, alpha = 0.8) +
  scale_y_continuous(sec.axis = sec_axis(~.*(100/scaleFactor),
                                        breaks = seq(0.100, by = 10),
                                         name = "Vaccination coverage (%)"),
                     breaks = seq(0,2.5, by = 0.5)) +
  scale_x_date(labels = date_format("\%b/\%y"), breaks = waiver()) +
  ylab("Age-adjusted in-hospital deaths/100,000 pop") + xlab("") +
  labs(subtitle = "") +
  theme_light() +
  theme(axis.title.y.left = element_text(color = "grey8"),
        axis.text.y.left = element_text(color = "grey8"),
        axis.title.y.right = element_text(color = "blue"),
        axis.text.y.right = element_text(color = "blue"),
        axis.text.x = element_text(color = "grey8"),
        plot.background = element_rect(color = "white"),
        panel.grid.major = element_line(color = "white"),
        panel.grid.minor = element_line(color = "white"))
```



```
colores <- c("
                                             DDFF", "#802268FF")
names(colores) <- c("20-49", "50-59", "60-69", "70+")
c0 <- lubridate::vmd("2021-01-17")
p3 <- df_obitos %>% filter(faixa_etaria %in% c("20-49", "50-59", "60-69", "70+"),
                           data > "2020-12-31") %>%
  mutate(faixa_etaria = factor(faixa_etaria,
                               levels = \mathbf{c}("70+", "60-69", "50-59", "20-49"))) \%
  ggplot() +
  geom area(aes(x = data, y = deaths, fill = faixa etaria)) +
  geom_vline(aes(xintercept = c0), linetype = "dashed" ,
             color = "black", alpha = 0.5) +
  geom_text(aes(x = lubridate::as_date(c0)+108, y = 3400,
                label = c("Vaccination campaign")), color = "grev5".
            size = 3.4, alpha = 0.8) +
  scale fill manual(guide = "none", values = colores) +
  scale_x_date(labels = date_format("%b/%y"), breaks = waiver()) +
  scale v continuous(labels = comma) +
  ylab("Reported deaths") + xlab("") + labs(subtitle = "") +
  labs(subtitle = "", color = "\n", fill = "\n") +
  theme classic() +
  theme(axis.title.y.left = element_text(color = "grey8"),
        axis.text.y.left = element_text(color = "grey8"),
        axis.title.y.right = element_text(color = "blue"),
        axis.text.y.right = element_text(color = "blue"),
        axis.text.x = element_text(color = "grey8"),
        plot.background = element_rect(color = "w
        panel.grid.major = element_line(color = "white").
        panel.grid.minor = element_line(color = "white"),
        legend.position = "top")
```



```
p5 <- df obitos %>%
  filter faixa_etaria %in% c("20-49", "50-59", "60-69", "70+"), data > "2020-12-31") %>%
 mutate(cobertura = if_else(faixa_etaria = "20-49" & cobertura > 1, 1, cobertura)) %>%
  ggplot() +
  geom line(aes(x = data, y = cobertura, color = faixa_etaria), size = 1) +
  geom hline(aes(vintercept = 0.75), linetype = "dashed") +
  geom vline(aes(xintercept = c0), linetype = "dashed".
             color = "black", alpha = 0.5) +
  geom_segment(aes(x = c75.1, y = -0.01, xend = c75.1, yend = 0.75),
               linetype = "dashed", color = "
                                                        ", alpha = 0.5) +
  geom_segment(aes(x = c75.2, y = -0.01, xend = c75.2, yend = 0.75),
               linetype = "dashed" , color = "#BA6338F
                                                       ", alpha = 0.5) +
  geom_segment(aes(x = c75.3, y = -0.01, xend = c75.3, yend = 0.75),
               linetype = "dashed" , color = "#5DB1DDF
                                                       ", alpha = 0.5) +
  geom segment(aes(x = c75.4, y = -0.01, xend = c75.4, yend = 0.75).
               linetype = "dashed", color = "#802268FF", alpha = 0.5) +
  geom text(aes(x = lubridate::as date(c0)+108, v = 1.1,
                label = c("Vaccination campaign")), color = "grey5", size = 3.4, alpha = 0.8) +
  scale_x_date(labels = date_format("%b/%y"), breaks = waiver()) + #breaks = "2 month
  scale_y_continuous(labels = scales::percent_format(), breaks = seq(0,100, by = 0.25),) +
  scale_color_manual(values = colores) +
  vlab("First dose vaccination coverage(%)") + xlab("") + labs(subtitle = "") +
  labs(subtitle = "", color = "\n") +
  theme classic() +
  theme(axis.title.y.left = element_text(color = "grey8"),
        axis.text.y.left = element_text(color = "grey8"),
        axis.title.y.right = element_text(color = "b
        axis.text.y.right = element_text(color = "blue
        axis.text.x = element_text(color = "grey8"),
        plot.background = element rect(color = "white
        panel.grid.major = element line(color = "white").
        panel.grid.minor = element line(color = "white").
        legend.position = "top")
```


Visualización de los datos | Data

Visualization

```
library(gtsummary)
library(gt)
descritive <-
  tbl_summary(data = df_CQO19_EQ5D_DM_final_filter,
             missing = "ifany",
             missing_text = "NA".
              percent = "row",
              include = c(LONGCOVID_CQ019, LONGCOVID_EQ5, SEX, AGE,
                         COUNTRY, CONTINENT),
              label = list(LONGCOVID_CQ019 = "LONGCOVID_CQ019", SEX = "Sex",
                          AGE = "Age",
                           COUNTRY = "Country", CONTINENT = "Continent"
  1%>%
  modify_header(label = "**Feature**") %>%
  as_gt() %>%
  tab_header(title = "Descriptive Analysis",
            subtitle = "Long COVID19 Worldwide Dataset"
descritive
descritive%>%
  gt::gtsave(filename = "Descriptive_Analysis_simples_1.rtf")
```

Descriptive Analysis

Long COVID19 Worldwide Dataset

Outcome - CQ019

	Gutcome - CQ015					
Feature	Overall, N = 10,997 ²	Recovered, N = 7,8801	Unrecovered, N = 3,1172			
Sex						
F	5,915 (100%)	4,161 (70%)	1,754 (30%)			
M	5,001 (100%)	3,658 (73%)	1,343 (27%)			
U	81 (100%)	61 (75%)	20 (25%)			
Age						
[18 - 30)	946 (100%)	743 (79%)	203 (21%)			
[30 - 40)	1,649 (100%)	1,266 (77%)	383 (23%)			
[40 - 50)	2,344 (100%)	1,699 (72%)	645 (28%)			
[50 - 60)	2,740 (100%)	1,854 (68%)	886 (32%)			
[60 - 70)	2,128 (100%)	1,461 (69%)	667 (31%)			
[70 - 80)	1,004 (100%)	734 (73%)	270 (27%)			
>= 80	186 (100%)	123 (66%)	63 (34%)			
Country						
BRA	468 (100%)	357 (76%)	111 (24%)			
COL	119 (100%)	82 (69%)	37 (31%)			
FRA	54 (100%)	52 (96%)	2 (3.7%)			
GBR	2,203 (100%)	938 (43%)	1,265 (57%)			
GIB	314 (100%)	227 (72%)	87 (28%)			
GMB	8 (100%)	5 (62%)	3 (38%)			
IND	1,364 (100%)	1,263 (93%)	101 (7.4%)			
ISR	600 (100%)	430 (72%)	170 (28%)			
ITA	387 (100%)	291 (75%)	96 (25%)			
NOR	5,459 (100%)	4,220 (77%)	1,239 (23%)			
PRT	3 (100%)	2 (67%)	1 (33%)			
SDN	2 (100%)	0 (0%)	2 (100%)			
ZAF	16 (100%)	13 (81%)	3 (19%)			
Continent						
Africa	26 (100%)	18 (69%)	8 (31%)			
Asia	1,964 (100%)	1,693 (86%)	271 (14%)			
Europe	8,420 (100%)	5,730 (68%)	2,690 (32%)			
South America	587 (100%)	439 (75%)	148 (25%)			

iMuchas gracias! Thank you!

¿Preguntas?

Any Question?

Dr Frank Kagoro

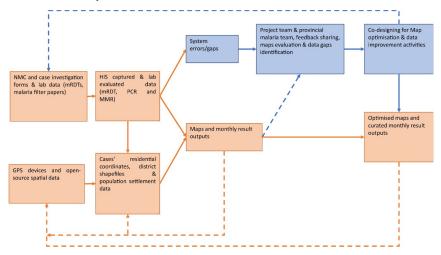
Dr Frank Kagoro - Research Fellow, University of Cape Town & Research Scientist, Ifakara Health Institute, Tanzania

Presentation

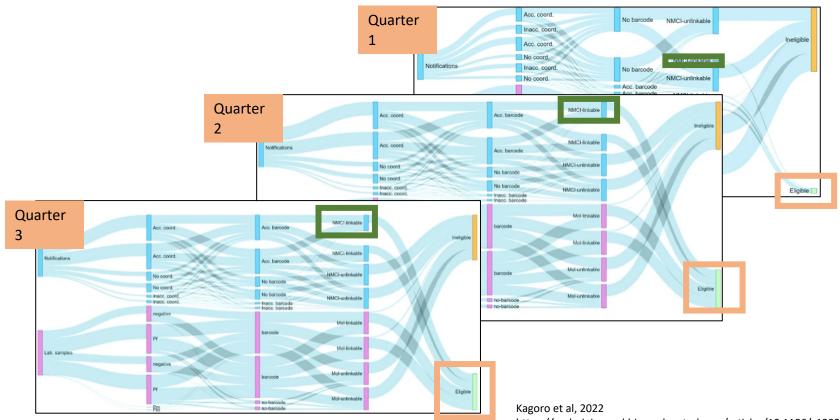
User-Centred Dashboards for COVID-19
Trends in Africa

User-Centred Visualisations – Application in Malaria and COVID-19

Dr Frank M. Kagoro MSc Research Fellow, University of Cape Town Research Scientist, Ifakara Health Institute


Why visualisations?

- Understanding data, analytics and findings
- Simplifying BIG data workflows and outputs
- Simplifying/enabling communication of analytical findings
- Increasing usability of data and analytical products


Problem 1: Malaria surveillance

 How best can we assess linkage and communicate antimalarial drug resistance (different sources, timelines)?

Are we improving over time? Where?

https://malariajournal.biomedcentral.com/articles/10.1186/s12936-022-04224-4

Monthly PDF reports

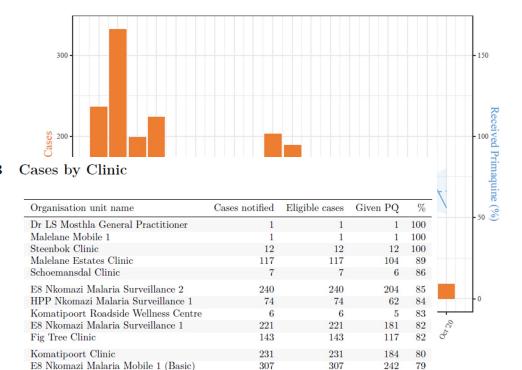
MPM Primaquine (Section 21) Summary - (23 February, 2021)

Formatted by - CCOAT, UCT

- Summary
- Cases by month

Cases by Clinic

> Side effects/progress


1.1 Reporting Time

HPP Nkomazi Malaria 3 (Basic)

Mgobodi CHC

Richtershoek Clinic

Start date	End date	Total Cases	Infants	Pregnant W.	Eligible
2019-04-01	2020-11-18	2665	41	0	2624

128

9

23

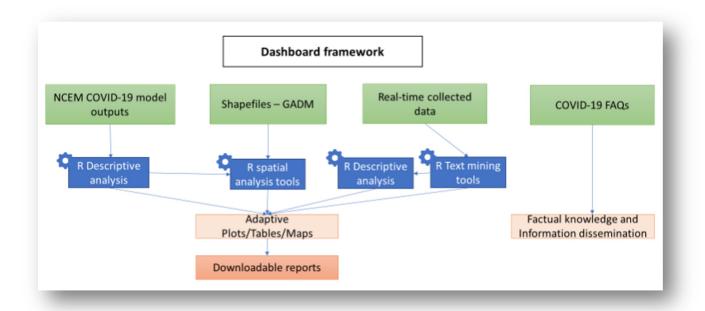
128

9

23

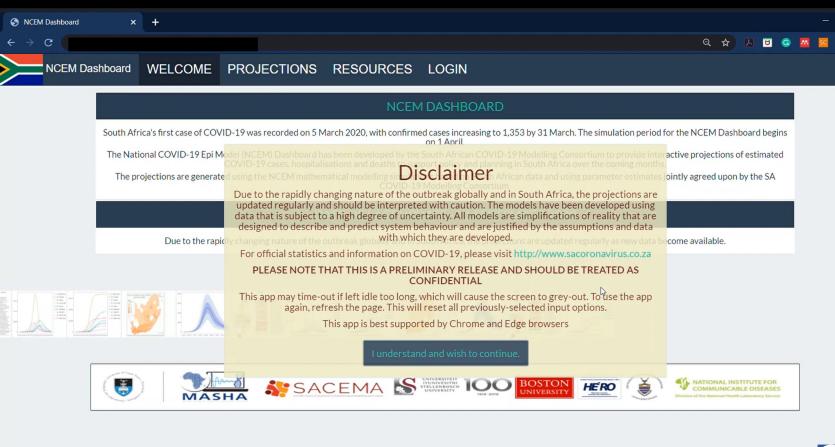
101

18

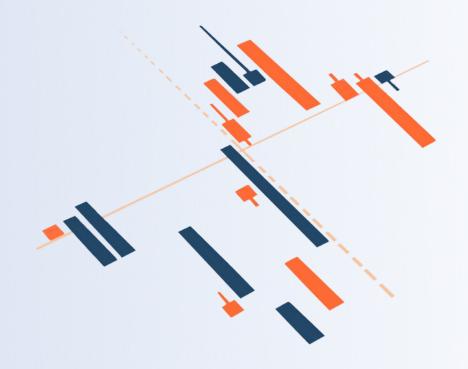

79

78

78


Problem 2:

- The South African COVID-19 Modelling Consortium was formed and provided projections of estimated COVID-19 cases, hospitalisations and deaths to support national and provincial response.
- How do we better visualise and use the estimates for training the rapid responders and other decision-makers and actors?

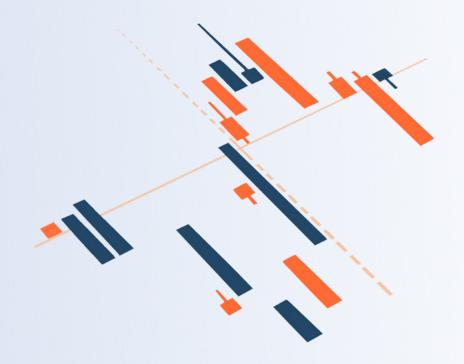



```
modifier ob
  mirror object to mirror
mirror_mod.mirror_object
 peration = "MIRROR_X":
mirror_mod.use_x = True
mirror_mod.use_y = False
mirror_mod.use_z = False
 _operation == "MIRROR Y"
 "Irror_mod.use_x = False
 lrror_mod.use_y = True
 lrror_mod.use_z = False
  operation == "MIRROR_Z";
  rror_mod.use_x = False
  rror_mod.use_y = False
  rror_mod.use_z = True
  Welection at the end -add
   ob.select= 1
   er ob.select=1
   ntext.scene.objects.action
   "Selected" + str(modified
    rror ob.select = 0
  bpy.context.selected_obj
   ata.objects[one.name].sel
  int("please select exaction
    OPERATOR CLASSES ----
      mirror to the selected
  ext.active_object is not
```

Opportunities of using R for visualisations

- Versatile language e.g., analysis, reproducible reports, powerpoints, webs, blogs, developing simple web apps
- Free open-source tools e.g. R programming, provide room for different professionals, organisations or groups of individuals without computer sciences background (who are interested in coding) to package their innovative solutions for the public good
- Foster collaborations (Mathematicians, Epidemiologists, policymakers etc). working together to address public health challenges

Questions & Answers



Thank you

