Machine-learning prediction of early postpartum prediabetes in women with gestational diabetes mellitus

Durga Parkhi Advisor: Prof Ponnusamy Saravanan

University of Warwick Novo Nordisk

25/11/2022

The Global Health Network Conference 2022, University of Cape Town, South Africa

Background

Gestational Diabetes Mellitus is "Glucose Intolerance first

diagnosed during pregnancy".

- ~90% GDM found in LMICs
- GDM women have 10-12 times higher risk of T2D

• Follow-up rates very low (~60% even in high-income countries)

Background

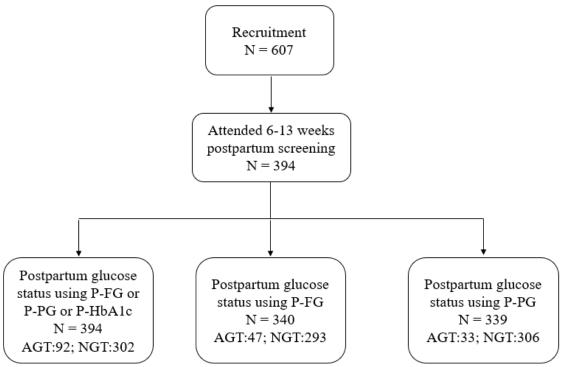
Vision

To improve quality of life of two individuals – the mother and her baby – in one go, & work towards prevention of inter-generational propagation of diabetes

Objective

Antenatal prediction of postpartum prediabetes in GDM women using advanced ML Machine Learning

Methods



THE Globai

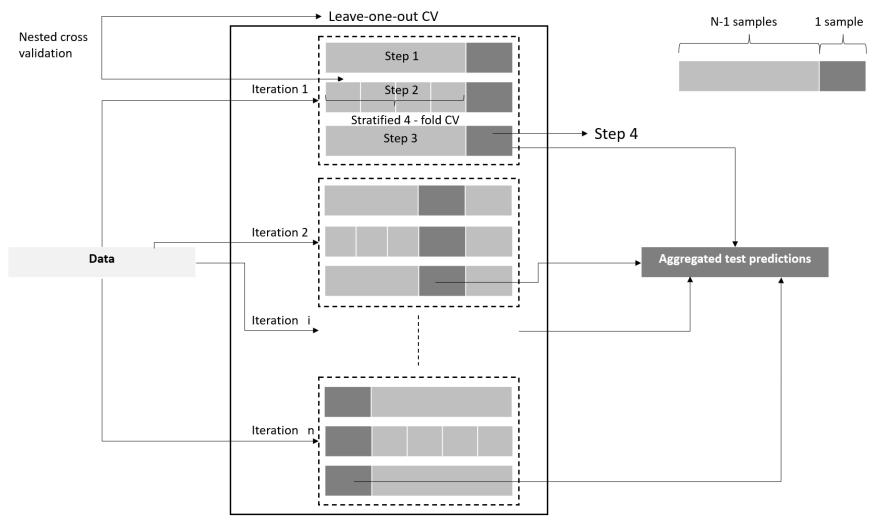
Part A. Prediction model development

- 394 samples for 21 features
- Algorithm: Logistic
 Regression and compare
 with tree-based algorithms
- Model evaluation metric: area under the ROC curve

Part B. Optimal cut-off selection to prioritize high-risk women depending upon resource availability

Kullback-Leibler Divergence theory and Information graphs

Methods



Step1: Divide full data into n-1 training and 1 testing

Step2: Feature selection using Lasso shrinkage hyperparameter optimization

Step3: Model training using Logistic regression

Step4: Model evaluation (aggregated test predictions)

Methods

The key ideas are:

- 1. Identify features with the potential of prediction of GDM out of a pool of all possible collected features
- 2. Create new predictive features from existing ones
- 3. Use selected predictors to build a prediction model using ML algorithms and a well-designed model architecture
- 4. Represent the model mathematically in the form of a CRS
- 5. Study the optimal thresholds for classifying women based on their individual risk
- 6. Convert all this into a simple software tool for practical use

Process and Challenges

- Small Data size Only 394 (64.91%) out of 607 had postpartum GTT data available
 - Data augmentation using synthetically generated data
- 2. Ethics Data privacy
 - Data replacement using synthetically generated data
- Data Incompleteness Failure to achieve 100% follow-up & Missing data
 - Targeted follow-up
- 4. Data Imbalance Only 92 (23.35%) out of 394 women had prediabetes

Results and Conclusions

Postpartum Prediabetes Prediction

Antenatal Fasting Glucose (mmol/L)		Postpartum Prediabetes Probability
5		0.0944903689501594
Antenatal HbA1c (mmol/mol)		Low Risk
Antenatal Fasting Glucose (mmol/L)		Postpartum Prediabetes Probability
5.8		0.2697285955868185
Antenatal HbA1c (mmol/mol)		High Risk
40		
Clear	Submit	Flag
THE GLOBAL HEALTH NETWORK		

CONFERENCE

Acknowledgements

Prof Ponnusamy Saravanan

Prof Leelavati Narlikar

Prof Rahul Siddharthan

Dr Uma Ram

Dr Yonas Weldeselassie

Dr Nithya Sukumar

Shivashri Chockalingam

Swetha Sampathkumar

Nishanthi Periyathambi

