Centre for Clinical Microbiology, Division of Infection and Immunity, University College London

LUC

Dr. Sylvia Rofael 23/05/2022

ALL AND

ILOs

- Explain the principals of the techniques used for genomic DNA Quality assessment
 - DNA Quantification
 - ► DNA Purity
 - ➢DNA integrity
- Apply relevant techniques to QC our DNA extracts
- Explain the Principals of DNA concentration calculations
- Apply this on our DNA extract to calculate the amounts needed per sample to pool the sequencing library at equimolar concentrations

- Proteins
- RNA

Purity

- Chemical impurities e.g detergents, denaturants, chelating agents
- high concentration of salts (affect efficiency of enzymatic steps

Nanodrop™ Microvolume UV-Vis Spectrophotometer

- NanoDrop[™] is a spectrophotometer that can be used to quantify the DNA and protein content in a 1-2 µl sample.
- RNA is a common contaminant in genomic DNA extracts
- Nanodrop cannot distinguish between DNA and RNA very well;
- Hence less accurate for quantification of DNA for library preparation purposes.
- Detection limit is $2ng/\mu L$

Nanodrop One/One^c

Nanodrop 2000[™]

Nanodrop[™]Microvolume UV-Vis Spectrophotometer

- Nucleic acids (such as DNA) absorb light at the 260 nm
- Proteins absorb light at 280 nm
- Phenolic compounds, EDTA, Carbohydrates read at 230 nm

Measure the purity of DNA extracts through measuring the ✓ A260/A280 ratio (recommended values ~1.8)

- <1.8 -> High protein content and other impurities
- (poor library preparation)
- >2 -> High RNA content
- ✓ A260/A230 recommended value (2.0 2.2)
 - A260/A230 significantly <2 indicates the presence of contaminants -> purification or PCR amplification (in library prep)

Nanodrop[™] Microvolume UV-Vis Spectrophotometer

Qubit ™ Fluorometer

- High Specificity of Qubit dsDNA Assay Kits provides accurate quantification of Nucleic acids.
- Target >53 ng/µl
- DNA Kits
 - High sensitivity (HS) kit 0.01-100 ng/uL.
 - Broad range (BR) kit 0.2-4000 ng/uL.
- Components of the kit
 - Qubit[®] dsDNA HS Reagent (Component A)
 - Qubit[®] dsDNA HS Buffer (Component B)
 - Qubit[®] dsDNA HS Standard #1 (Component C)
 - Qubit[®] dsDNA HS Standard #2 (Component D)
 - Qubit[®] Assay tubes

Qubit ™ Fluorometer

Prepare the Assay Tubes* according to the table below.

	Standard Assay Tubes	User Sample Assay Tubes
Volume of Working Solution (from step 2) to add	190 µL	180–199 μL
Volume of Standard (from kit) to add	10 µL	
Volume of User Sample to add	_	1–20 μL
Total Volume in each Assay Tube	200 µL	200 µL
Dilution Factor	20x	1uL ->
		2uL ->

Qubit ™ Fluorometer

* where n = number of Standards plus number of Samples

For research use only. Not intended for any animal or human therapeutic or diagnostic use. ©2010 Life Technologies Corporation. All rights reserved. The trademarks mentioned herein are the property of Life Technologies Corporation or their respective owners.

Gel Electrophoresis Principal

DNA is separated based on their migration rate in a gel matrix (e.g Agarose) under the influence of electric field

DNA carry charge ?

Scanning Electron Micrograph of Agarose Gel

What are Factors?

Migration Rate

- Size of the DNA fragment
- Voltage of Electric field
- Porosity of the gel matrix (Resistance)

Resolution

- DNA Ladder + Tracking Dye
- Loading Dye 6x Dilution 1:5
- Tris/Borate/EDTA buffer (TBE buffer) Prepare
- 1x or 0.5x TBE buffer

Agarose (0.7%) (? -> 100mL) (?->50 mL) TBE buffer

GelRed[®] (Biotium) or Ethidium Bromide

Gel Electrophoresis

- Conventional agarose gel electrophoresis employs a static field and can resolve DNA fragments up to 50 kb
- For Resolution of larger Fragments: Pulsed Gel Electrophoresis (PFGE) is more useful

https://www.youtube.com/watch?v=k_QAXLGuQ5w

Diffuse Smearing

Georgia[®]D.[®]Kaprou et al. 2020. Towards PCB-Based[®]MiniaturizedmThermocyclers for[®] DNA[®]Amplification

Agilent Bioanalyzer/ TapeStation 1µL Sample

- Agilent 2100 Bioanalyzer instrument
- Chips disposable
- Kits
- Agilent DNA 12000 kits are designed for the sizing and quantitation of double-stranded DNA fragments from 100 to 12000 bp.
- Agilent DNA 7500 100 7500 bp
- Can analyse 12 samples/chip, chip can not be reused.

Agilent 4200 or 2200 TapeStation Credit card size Screen Tape 16 Samples/ Card Can run up to 95 samples in a plate The unused lanes in Card is reusable -> fixed cost per sample Kits (Reagents + Screen tape): Genomic DNA kit :Broad Range 100-60,000 bp Agilent D1000 Kit/Agilent HS D1000 up to 1000 bp Agilent D5000 Kit/Agilent HS D5000 up to 5000 bp

Bioanalyzer

TapeStration Card Size Screen Tape

Kit Components (Genomic DNA ScreenTape Assay)

Part Number	Name	Color	Amount
5067-5365	Genomic DNA ScreenTape		7 ScreenTape devices
5067-5366	Genomic DNA Reagents		2 vials
	Genomic DNA Ladder	•	25 μL
	Genomic DNA Sample Buffer		1350 µL

TapeStation Results

B1:2

8888

D1: C

8

5

τ

sity [No

f

Sample]

8

Size

[bp]

Size

[bp]

A1: Ladder

TapeStation[™] Results, Which is Better?

Α

В

What to aim for?

Mwt of DNA Fragment = size of a fragment (TapeStation) x average Mwt of b

size of a fragment (TapeStation) x average Mwt of bp (660 Da)

A mole of anything has Avogadro's number **6.022** × **10²³** of this thing Rule: Pooling the Sequencing library at equal equimolar ratio. What doe this practically mean?

Any Questions?

