



## Acute Flaccid Myelitis: AFM Preparedness for 2022 and Beyond

Carlos A. Pardo, MD

Division of Neuroimmunology and Neuroinfectious Disorders Johns Hopkins Myelitis and Myelopathy Center

cpardov1@jhmi.edu

#### **Educational objectives**



- To review current clinical and epidemiology aspects of Acute Flaccid Myelitis (AFM)
- To understand current concepts on pathogenesis
- To review diagnostic approach and new concepts on management

April 14, 2022 2



Pictures sources: cnn.com, cbsnews.com, washingtonpost.com



## Acute Flaccid Myelitis

In most of the cases of AFM there is preceding history of upper respiratory Infection in almost all member of the Household

- Age 1-12 ys in average
- No sex predilection ; Male:Female

**Enteroviruses are the main suspect:** 

• EVD68, EVA71, Coxsackie

**Environmental factors associated** 

Seasonality



Factors in Acute Flaccid Myelitis

Despite the presence of infection in the entire household only one younger member

of the family is affected

• Genetic predisposition?

#### **AFM** epidemiology in the USA:



#### CDC outbreak reports and 2018 state distribution

Number of confirmed reported AFM cases, Aug 2014 – January 2022 (n=677)





# WA (11) MT (3) ND (1) MN (11) MI (10) MI (12) (12) (13) NV (1) NV (1)

#### Source: CDC website

https://www.cdc.gov/acute-flaccid-myelitis/cases-in-us.html

Data current as of June 1, 2020

#### Take-home message:

- Cases of AFM have occurred in almost all states of the USA
- Most of the cases occur at the end of the summer and fall

#### 2018 AFM Outbreak in the USA: Clinical Features



Based on CDC report published by Lopez A. et al, MMWR / July 9, 2019 / Vol. 68

#### Temporal profile in acute flaccid myelitis Cases evaluated at Johns Hopkins 2014-2016



Comparative quantitative clinical, neuroimaging, and functional profiles in children with acute flaccid myelitis at acute and convalescent stages of disease

ELIZA GORDON-LIPKIN<sup>1,2\*</sup> | LAURA S MUÑOZ<sup>1\*</sup> | JESSICA L KLEIN<sup>3</sup> | JANET DEAN<sup>2</sup> | IZLEM IZBUDAK<sup>4</sup> | CARLOS A PARDO<sup>1,5</sup> D

Prodromal illness

Asymptomatic period

Onset of neurological symptoms

Period of time between onset of neurological symptoms to nadir

#### Tissue susceptibility to Enterovirus-D68 Infection



## Areas of CNS susceptibility in AFM













#### **Differential** Diagnosis in **Acute Flaccid Myelitis 2021**



|                                           | Acute flaccid myelitis                                                    | Guillain-Barré syndrome                                                                                                                                                                                                   | Acute transverse myelitis (demyelinating or idiopathic)                 | Spontaneous spinal cord infarction                |
|-------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------|
| Prodromal illness                         | +++                                                                       | +++                                                                                                                                                                                                                       | +/-                                                                     | -                                                 |
| Temporal evolution                        | Hours to days                                                             | Days to weeks                                                                                                                                                                                                             | Days to weeks                                                           | Minutes to hours                                  |
| Pattern of weakness                       | Asymmetric, arms>legs                                                     | Symmetric, ascending                                                                                                                                                                                                      | Variable                                                                | Symmetric, severe                                 |
| Facial/bulbar weakness                    | ++                                                                        | ++                                                                                                                                                                                                                        | +/-                                                                     | +/-                                               |
| Respiratory failure                       | ++                                                                        | ++                                                                                                                                                                                                                        | +/-                                                                     | +/-                                               |
| Numbness/<br>paraesthesia                 | +/-                                                                       | +++ (except AMAN)                                                                                                                                                                                                         | ***                                                                     | +                                                 |
| Sensory level                             | -                                                                         | -                                                                                                                                                                                                                         | ++                                                                      | ++                                                |
| Encephalopathy                            | -                                                                         | -                                                                                                                                                                                                                         | +/- (eg, ADEM)                                                          | -                                                 |
| Bowel/bladder<br>dysfunction              | +/-                                                                       | +/-                                                                                                                                                                                                                       | ++                                                                      | ***                                               |
| Possible associated symptoms or syndromes | Headache, neck pain/stiffness, neuropathic pain                           | Neuropathic pain                                                                                                                                                                                                          | Optic neuritis, encephalitis, seizures                                  | Severe back/limb pain at onset                    |
| MRI spinal cord                           | III-defined grey-matter predominant<br>lesion, +/- nerve root enhancement | Normal cord, +/- nerve root enhancement                                                                                                                                                                                   | Variable, but usually a well-defined enhancing white>grey matter lesion | Non-enhancing anterior cord or grey-matter lesion |
| CSF                                       | Mild-moderate pleocytosis                                                 | Elevated protein                                                                                                                                                                                                          | Mild-moderate pleocytosis                                               | Sometimes elevated protein or mild pleocytosis    |
| Microbiological tests                     | See panel 1                                                               | Stool sample: bacterial culture, viral<br>RT-PCR panel; respiratory sample: viral<br>RT-PCR panel; serum: Campylobacter<br>jejuni and Mycoplasma pneumoniae<br>IgM/IgG; other organisms according to<br>region and season | If indicated based on clinical presentation                             | Not usually indicated                             |
| Other useful tests                        | +/- EMG/NCS                                                               | EMG/NCS; serum: anti-ganglioside antibodies                                                                                                                                                                               | Serum: MOG-IgG, aquaporin-4-IgG;<br>CSF: oligoclonal bands              | Angiography                                       |

Acute flaccid myelitis: cause, diagnosis, and management

Lancet 2021; 397: 334-46

## Clinical Diagnosis of Acute Flaccid Myelitis 2021



#### Panel 1: Clinical and paraclinical evaluation of patients with suspected AFM

#### Initial clinical assessment

- Consider AFM in patients presenting with rapid-onset weakness, particularly when occurring during or shortly following a suspected viral illness.
- Complete neurological examination should include specific tests for proximal muscle weakness (such as standing up from a seated position on the floor), axial weakness (neck and trunk flexion and extension), and cranial nerve abnormalities.
- Clinical features atypical for AFM include encephalopathy unrelated to metabolic disturbance, seizures, extensive sensory abnormalities, or evolution to nadir over more than 10 days.
- Neurology and infectious disease specialists should be consulted (where available) to help with diagnosis, evaluation, and treatment.
- Admission to intensive care unit should be considered when indicated, and close monitoring for respiratory or autonomic deterioration, or both, is essential.

Acute flaccid myelitis: cause, diagnosis, and management

Lancet 2021; 397: 334-46

#### Acute flaccid myelitis and Guillain-Barré syndrome in children: A comparative study with evaluation of diagnostic criteria

TABLE 1 Demography and clinical presentation of AFM and GBS in children

|                                                                                  | AFM, n= 26  | GBS, n = 156  | p       |
|----------------------------------------------------------------------------------|-------------|---------------|---------|
| Demography                                                                       |             |               |         |
| Male:female (%<br>male)                                                          | 14:12 (54)  | 82:74 (53)    | ns      |
| Age, years, median<br>(IQR, full range)                                          | 3 (2-5, 8)  | 7 (3-13, 17)  | <0.001  |
| Antecedent events                                                                |             |               |         |
| Time antecedent<br>event-onset<br>weakness, days,<br>median (IQR,<br>full range) | 7 (5-8, 10) | 11 (7-15, 41) | ns      |
| No antecedent<br>event, n (%)                                                    | 1/26 (4)    | 19/143 (13)   | ns      |
| Respiratory tract infection, n (%)                                               | 23/26 (89)  | 66/146 (45)   | <0.001  |
| Vomiting, n (%)                                                                  | 2/26 (8)    | 32/118 (27)   | ns      |
| Diarrhea, n (%)                                                                  | 5/26 (19)   | 47/145 (32)   | ns      |
| Fever, n (%)                                                                     | 22/24 (92)  | 51/140 (36)   | <0.001  |
| Vaccination, n (%)*                                                              | 0/2 (0)     | 11/130 (9)    | np      |
| Time onset                                                                       | 0 (0, 5)    | 5 (3-8, 30)   | <0.001  |
| weakness-<br>admission, days,<br>median (IQR,<br>full range) <sup>b</sup>        |             |               |         |
| Time onset                                                                       | 3 (2-5, 9)  | 8 (5-10, 38)  | < 0.001 |
| weakness-<br>nadir, days,<br>median (IQR,                                        |             |               |         |

full range)c



Acute flaccid myelitis and Guillain-Barré syndrome in children: A comparative study with evaluation of diagnostic criteria

Jelte Helfferich<sup>1</sup> | Joyce Roodbol<sup>2</sup> | Marie-Claire de Wit<sup>3</sup> | Oebele F. Brouwer<sup>1</sup> | Bart C. Jacobs<sup>4</sup> | the 2016 Enterovirus D68 Acute Flaccid Myelitis Working Group and the Dutch Pediatric GBS Study Group

Euro J of Neurology, Volume: 29, Issue: 2, Pages: 593-604, First published: 08 November 2021, DOI: (10.1111/ene.15170)

## Clinical Diagnosis of Acute Flaccid Myelitis 2021

#### Radiological evaluation

- MRI whole spine and brain should be prioritised, including T2 and T1 pre-contrast and post-contrast sequences in both axial and sagittal planes.
- The characteristic MRI abnormality is grey-matter predominant T2 hyperintensity of the spinal cord with associated spinal cord oedema; lesion(s) are usually longitudinally extensive and non-enhancing. Nerve root enhancement might be present.
- Repeat MRI can be considered after further clinical evolution in patients with a suggestive clinical presentation but in whom early MRI of the spinal cord is apparently normal.

#### Low-resource settings

 When MRI is not possible, rapid completion of available laboratory testing should be prioritised (CSF analysis, microbiological sampling), and EMG/NCS can be incorporated in the initial evaluation when available.



Acute flaccid myelitis: cause, diagnosis, and management

## Areas of CNS susceptibility in AFM









#### Areas of CNS susceptibility in AFM







#### Susceptible regions of the brainstem

- Dorsal region of pons +medulla
- Cranial nerves (VII, VIII, IX, X, XI. XII

#### AFM: Ventral nerve root enhancement



#### AFM: Subacute/chronic appearance



#### AFM: Subacute/chronic appearance



#### Myelin Oligodendrocyte Glycoprotein Antibody Disease

CASE: Myelin Oligodendrocyte Glycoprotein (MOG) antibody disease







MOG antibody disease: POST-CONTRAST IMAGING





#### MOG antibody disease: BRAIN IMAGING



CASE: Spinal cord infarction







#### **CASE:** Chiari malformation



#### MRI spine for diagnosis of AFM

Green flags

Longitudinally-extensive

Cervical cord involved

Hazy abnormality

Gray matter predominant

Minimal enhancement

+/- nerve root enhancement

Red flags

Focal discrete lesions

Cervical cord spared

Round/ovoid lesions

White matter predominant

Focal enhancement

Cavitation/cystic

#### MRI brain in AFM

Green flags



Normal

Posterior brainstem hazy



hyperintensity

Deep gray matter hyperintensity (rare)



• Red flags

White matter lesions



**Cortical lesions** 



Optic nerve lesions





#### Diagnostic approach for AFM: CDC surveillance 2018

Lab studies for identification of pathogens



## Laboratory Testing in the Diagnosis of Acute Flaccid Myelitis 2021



#### Laboratory evaluation

- Obtain specimens as soon as possible (ie, within hours of clinical presentation).
- Respiratory samples (both nasopharyngeal and oropharyngeal): respiratory viral RT-PCR testing (to include enterovirus RT-PCR). When possible, a positive enterovirus RT-PCR result should be subtyped (to include enterovirus D68, enterovirus A71, and other common subtypes).
- Stool samples or rectal swab: enterovirus RT-PCR, viral culture for poliovirus when epidemiologically relevant (with RT-PCR of isolated virus to differentiate between wild-type and vaccine-derived virus).
- Blood sample: microbiological tests (enterovirus RT-PCR and other epidemiologically appropriate micro-organism tests—eg, West Nile virus serology), and testing for specific alternative myelopathy diagnoses to include MOG IgG and aquaporin-4 IgG.
- CSF sample: cell counts, protein, glucose, oligoclonal bands, enterovirus RT-PCR (although yield is very low), and other epidemiologically appropriate micro-organism tests.
- When RT-PCR is not readily available, samples can still be acquired and frozen for future analysis or transfer to public health authorities.
- Respiratory, stool, serum, and CSF samples should also be sent to the relevant public health authorities, according to local protocols.

Acute flaccid myelitis: cause, diagnosis, and management

#### A Consensus on Clinical Diagnosis of Acute Flaccid Myelitis 2021



| Diagnostic items                                                                                          | Definite | Probable | Possible  | Uncertain |
|-----------------------------------------------------------------------------------------------------------|----------|----------|-----------|-----------|
| H1: Acute onset of limb(s) weakness (period from onset to nadir: hours to 10 days)                        | Р        | Р        | P*        | Р         |
| H2: Prodromal fever or illness†                                                                           | P/A      | P/A      | P/A       | Р         |
| E1: Weakness involving one or more limbs, neck, face, or cranial nerves                                   | Р        | Р        | P*        | Р         |
| E2: Decreased muscle tone in at least one weak limb                                                       | Р        | Р        | P/A       | Р         |
| E3: Decreased or absent deep tendon reflexes in at least one weak limb‡                                   | Р        | Р        | P/A       | Р         |
| MRI: Spinal cord lesion with predominant grey matter involvement, with or without nerve root enhancement§ | Р        | Р        | Р         | ND        |
| CSF: Pleocytosis (white cell count > 5 cell/L)¶                                                           | Р        | A or ND  | P/A or ND | P/A or ND |

#### Factors that might suggest an alternative diagnosis

- Encephalopathy that cannot be explained by fever, illness, respiratory distress, metabolic abnormalities, or medications
- 2. Presence of sensory deficits on examination|
- Presence of lesions in supratentorial white matter or cortex, which should prompt consideration of ADEM, MOG-antibody associated disease, neuromyelitis optica spectrum disorder, encephalomyelitis, and others
- Absence of CSF pleocytosis, which should prompt consideration of Guillain-Barré syndrome, botulism, ischaemic cord lesions, and others
- 5. Positive serum aquaporin-4 (AQP-4) antibody, which would exclude AFM
- 6. Positive serum MOG antibody, which would suggest MOG-antibody associated disease||

Acute flaccid myelitis: cause, diagnosis, and management

## There is not a good treatment approach for AFM yet!!

## Treatment Approaches For Acute Flaccid Myelitis

- Steroids??
- Plasma exchange??
- IVIG?
- Fluoxetine??
- Rehabilitation!!
- Nerve transfers ?!

NULL HYPOTHESIS

CLASS OF EVIDENCE

#### Safety, tolerability, and efficacy of fluoxetine as an antiviral for acute flaccid myelitis

Kevin Messacar, MD, Stefan Sillau, PhD, Sarah E. Hopkins, MD, Catherine Otten, MD, Molly Wilson-Murphy, MD, Brian Wong, MD, Jonathan D. Santoro, MD, Andrew Treister, MD, Harlori K. Bains, MD, Alcy Torres, MD, Luke Zabrocki, MD, Julia R. Glanternik, MD, Amanda L. Hurst, PharmD, Jan A. Martin, MD, Teri Schreiner, MD, Naila Makhani, MD, Roberta L. DeBiasi, MD, Michael C. Kruer, MD, Adriana H. Tremoulet, MD, Keith Van Haren, MD, Jay Desai, MD, Leslie A. Benson, MD, Mark P. Gorman, MD, Mark J. Abzug, MD,\* Kenneth L. Tyler, MD,\* and Samuel R. Dominguez, MD\*

Neurology® 2018;92:1-9. doi:10.1212/WNL.000000000006670

Correspondence

Dr. Messacar kevin.messacar@ childrenscolorado.org

Neurology<sup>®</sup>



RESEARCH ARTICLE

A mouse model of paralytic myelitis caused by enterovirus D68

Alison M. Hixon<sup>1,2</sup>, Guixia Yu<sup>3,4</sup>, J. Smith Leser<sup>5</sup>, Shigeo Yagi<sup>6</sup>, Penny Clarke<sup>5</sup>, Charles Y. Chiu<sup>3,4</sup>, Kenneth L. Tyler<sup>5,7,8</sup> +

**Hixon AM, Clarke P, Tyler KL.** Evaluating Treatment Efficacy in a Mouse Model of Enterovirus D68-Associated Paralytic Myelitis.

J Infect Dis. 2017 Dec 5;216(10):1245-1253

#### Outcomes in Pediatric Myelopathies 2010-2018

#### Patients followed at JHM&M Center 2010-2018 n=131



#### Take-home messages:

oAFM patients experience long-term sequelae and reduced rate of recover

oPatients with infectious/postinfectious and autoimmune myelopaties exhibit better rates of recovery than vascular myelopathy or AFM patients

Garcia-Dominguez, M, Gordon-Lipkin E, Murphy O, Pardo CA et al.

JHM&M Center 2019, unpublished

April 14, 2022 29

#### Tissue susceptibility to Enterovirus-D68 Infection



#### Seasonality of non-polio enteroviruses in USA





The seasonality of nonpolio enteroviruses in the United States: Patterns and drivers

Margarita Pons-Salort<sup>a,1</sup>, M. Steven Oberste<sup>b</sup>, Mark A. Pallansch<sup>b</sup>, Glen R. Abedi<sup>b</sup>, Saki Takahashi<sup>c</sup>, Bryan T. Grenfell<sup>c,d</sup>, and Nicholas C. Grassiv<sup>a</sup>

PNAS | March 20, 2018 | vol. 115 | no. 12

Pons-Salort et al., Science 361, 800-803 (2018)

#### Serotype-specific immunity explains the incidence of diseases caused by human enteroviruses

Margarita Pons-Salort\* and Nicholas C. Grassly



Fig. 1. Nonpolio enterovirus incidence and births in Japan (2000–2014). (A and B) Monthly number of reported enterovirus isolations from January 2000 to December 2014 for (A) nonpolio enteroviruses and (B) CV-A4. (C) Smoothed annual number of live births. (D) Average wavelet power of the square-root-transformed time series for CV-A4 showing the emergence of a biennial pattern of incidence.



#### RAPID COMMUNICATION

### Re-emergence of enterovirus D68 in Europe after easing the COVID-19 lockdown, September 2021

Euro Surveill. 2021;26(45):pii=2100998. https://doi.org/10.2807/1560-7917.ES.2021.26.45.2100998

KSM Benschop,......, TK Fisher, H. Harvala



|                                              | Number of cases | Proportion of cases |
|----------------------------------------------|-----------------|---------------------|
| Age group                                    |                 |                     |
| o-3 months                                   | 7               | 5%                  |
| 4-12 months                                  | 15              | 11%                 |
| 13-24 months                                 | 22              | 16%                 |
| 2-5 years                                    | 76              | 55%                 |
| 6–15 years                                   | 9               | 6%                  |
| 16-25 years                                  | 2               | 1%                  |
| 26-45 years                                  | 2               | 1%                  |
| > 45 years                                   | 6               | 4%                  |
| Sex                                          |                 |                     |
| Female                                       | 51              | 37%                 |
| Male                                         | 88              | 63%                 |
| Symptoms (data reported for)                 |                 |                     |
| Any symptom reported (n=121)                 | 120             | 99%                 |
| Fever (n = 111)                              | 49              | 44%                 |
| Enteric symptoms (n=120)                     | 4               | 3%                  |
| Respiratory symptoms (n=120)                 | 116             | 97%                 |
| Neurological symptoms <sup>a</sup> (n = 111) | 5               | 5%                  |
| Clinical information (data reported for)     |                 |                     |
| Hospitalised (n=49)                          | 30              |                     |
| Pre-existing condition <sup>b</sup> (n = 45) | 20              |                     |

Acute
Flaccid Myelitis
Working

Group



A model of horizontal collaboration to achieve consensus on the clinical diagnosis, management and research focused on acute flaccid myelitis (AFM)

#### **Objectives:**

- To establish a consensus for diagnosis and management of AFM during the acute and chronic stages of disease
- Conceive, develop, and conduct collaborative clinical studies to understand the natural history of AFM
- To facilitate clinical and basic science research to accelerate the discovery of treatment approaches in AFM

#### **AFM Working group Network**



#### Research for understanding AFM

NIAID Acute Flaccid Myelitis Natural History



### **Group 1 (AFM Cases)**Inclusion and Exclusion Criteria

#### Inclusion Criteria:

- Signed informed consent from parent(s) or legal guardian(s), and assent from participant if indicated
- Onset of flaccid limb weakness involving one or more extremities suggestive of possible, probable, or confirmed AFM within previous 30 days
- MRI of spinal cord that has been or will be obtained clinically
- Age < 18 years</li>
- Weight ≥ 7.8 kg
- Agrees to Future Use of Specimens

#### **Exclusion Criteria:**

- Known condition other than AFM causing the flaccid limb weakness
- Any condition that, in the opinion of the investigator, would place the subject at an unacceptable injury risk or that may interfere with successful study completion

Note: Subjects enrolling in Group 1 may subsequently be determined by the Protocol Adjudication Committee to not have AFM. This assessment will not occur in real time. If a subject is deemed to have AFM, they will be classified as Group 1A cases (possible, probable, or confirmed AFM cases). If a subject is deemed to not have AFM, they will be classified as Group 1B cases (non-AFM cases) and analyzed accordingly.

### Group 2 (controls) Inclusion and Exclusion Criteria

#### **Inclusion Criteria:**

- Signed informed consent from parent(s) or legal guardian(s), and assent from participant if indicated
- Residing household contact of a child enrolled in Group 1 of this study within previous 30 days
- Weight ≥ 6.0 kg
- Agrees to Future Use of Specimens

#### **Exclusion Criteria:**

- Flaccid limb weakness involving one or more extremities
- Any condition that, in the opinion of the investigator, would place the subject at an unacceptable injury risk or that may interfere with successful study completion

Note: If a subject enrolled in Group 2 subsequently develops findings suggestive of AFM, they may be asked if they would like to enroll into Group 1 of the study and be followed and analyzed accordingly.

# Acute Flaccid Myelitis: What we have learned in order to be prepared

Google: AFM Virtual Symposium Youtube



#### 2020 AFM Virtual Symposium — Part I

14 videos • 164 views • Last updated on Jun 14, 2020



#### 2020 AFM Virtual Symposium — Part III

12 videos · 105 views · Last updated on Jun 20, 2020



#### 2020 AFM Virtual Symposium — Part II

10 videos · 47 views · Last updated on Jun 15, 2020



#### 2020 AFM Virtual Symposium — Part IV

14 videos · 46 views · Updated 7 days ago



Siegel Rare Neuroimmune Association



## Acute Flaccid Myelitis: What we have learned in order to be prepared



Part V

Google: AFM Virtual Symposium Youtube

| Part I   | https://www.youtube.com/playlist?list=PLXi60bECkjnWc16yfgMVN1u7qOuRM8d14 |
|----------|--------------------------------------------------------------------------|
| Part II  | https://www.youtube.com/playlist?list=PLXi60bECkjnVje4VHjzW5pzkeYtSJBdqt |
| Part III | https://www.youtube.com/playlist?list=PLXi60bECkjnV2Iqm1SxKm_V2QvDHfg3yR |
| Part IV  | https://www.youtube.com/playlist?list=PLXi60bECkjnVwvAk3_fPWS700NR6JeBaS |

https://www.youtube.com/playlist?list=PLXi60bECkjnVSYQ3C8lte69RmWbaguX I