FIND

RAPID DEVELOPMENT OF RELIABLE DIAGNOSTICS FOR EMERGING INFECTIOUS DISEASES

Lessons learned from COVID-19

Arta Fernández Suárez & Devy Emperador

FIND

1

FIND, THE GLOBAL ALLIANCE FOR DIAGNOSTICS

20207778

FIND, THE GLOBAL ALLIANCE FOR DIAGNOSTICS SEEKS TO ENSURE EQUITABLE ACCESS TO RELIABLE DIAGNOSIS **AROUND THE WORLD**

We connect countries and communities, funders, decisionmakers, healthcare providers and developers to spur diagnostic innovation and make testing an integral part of sustainable, resilient health svstems

- Established in 2003 as a product development & delivery partnership
- Co-convener of the Access to COVID-19 Tools (ACT) Accelerator **Diagnostic** Pillar
- WHO Collaborating Centre for Laboratory Strengthening & **Diagnostic Technology Evaluation**
- WHO SAGE-IVD member
- ISO-certified quality management system for IVD clinical trials
- Governance: Board of Directors & Scientific Advisory Committee

2021 STRATEGY: EXPECTED IMPACT

Save 1 million lives through accessible, quality diagnosis

Save US\$1 billion in healthcare costs to patients and health systems

Empower 10+ countries

with diagnostic data to inform policy and care

THE ACCESS TO COVID-19 TOOLS (ACT) ACCELERATOR DIAGNOSTICS PILLAR FIND WORKING TO HARNESS INNOVATION, SECURE ACCESS & DEPLOY AFFORDABLE, QUALITY POINT-OF-CARE TESTS

FIND

2

DIAGNOSTICS FOR OUTBREAK-PRONE DISEASES

MANY SHARED CHALLENGES

WHO R&D BLUEPRINT PATHOGENS

Critical/important gaps across all, except for the three pathogens with recent high-profile outbreaks (Ebola, SARS, Zika, and now COVID-19) in which international focus/funding led to prioritized development of validated diagnostics

Overall, lack of focused support for research and development (R&D) in the absence of an event, prevents rapid detection of outbreaks, leading to increased loss of life and donor expenditure and the absence of sustainable diagnostic solutions

WHO Blueprint priority disease	Fatality rate	Recent outbreaks	Diagnostic need (red = critical, amber = important; green = remaining)	Diagnostic situation overview
CCHF	10-40%	Pakistan, 2010		 No established reference test Very limited availability of commercial assays, with very low usage and limited performance data No WHO prequalified diagnostic test
Filoviruses (Ebola and Marburg)	24-90%	West Africa, 2013–2016 and Democratic Republic of the Congo, 2017 & 2018 (Ebola); Uganda and Kenya, 2017 (Marburg)		 Recent high-profile outbreaks resulted in international focus and funding, which has enabled the development and introduction of critical diagnostics Additional work is needed to improve current diagnostics, develop POC tests and ensure reliable availability Additional work is also needed to ensure regulatory approval beyond WHO EUAL
Lassa fever	1–15%	Annual recurring outbreaks in West Africa		 No WHO-approved diagnostics and limited commercially available tests, none of which are easily deployable in the settings needed
MERS-CoV	~35%	Kingdom of Saudi Arabia, 2013–2018; South Korea, 2015		 Limited availability of validated assays, restricted to highly complex tests Lack of POC diagnostics
SARS	~10%	Global, 2003		 Recent high-profile outbreaks resulted in international focus and funding, which has enabled the development and introduction of critical diagnostics Additional work is needed to improve current diagnostics, develop POC tests and ensure reliable availability
Nipah and henipaviral diseases	~30%	Bangladesh, 2004		 No WHO-approved diagnostics and limited commercially available tests, none of which are easily deployable in the settings needed
Rift Valley fever	<1%	Republic of Niger, 2016		 No WHO-approved diagnostics and limited commercially available tests, none of which are easily deployable in the settings needed
Zika virus disease	Not fatal	South and North America, 2015–2016		 Recent high-profile outbreaks resulted in international focus and funding, which has enabled the development and introduction of critical diagnostics Additional work is needed to improve current diagnostics, develop POC tests and ensure reliable availability Additional work is also needed to ensure regulatory approval beyond WHO EUAL
Disease X	Not	yet known		 Need for diagnostic platforms that can rapidly adapt and support diagnostics for unknown pathogens

COVID-19 has placed testing in the spotlight

6T-GINOS

If we ask ourselves what has benefited us in this first phase of the spread of the virus, it is our high-test capacities, and the dense laboratory network"

Test, test, test" --- **Tedros Adhanom Ghebreyesus**, WHO

🔺 Angela Merkel, Germany

FIND

✓ If you don't test, ____ John Nkengasong, Africa CDC you won't find"

SUPPORTING CONTAINMENT IN A PANDEMIC **SARS-COV-2 TESTING PORTFOLIO**

access

Improved

Clinical diagnosis	Vaccine efficacy / seroprevalence	Surveillance
Lab-based molecular testing	Lab-based antibody testing (ELISA, automated IA)	Sequencing Lab-based SNP detection
Decentralized molecular testing platforms	Decentralized immunoassay platforms	
Antigen rapid diagnostic tests (RDTs)	Antibody RDTs	

SPEED OF COVID-19 ANTIGEN RDT INTRODUCTION HAS BEEN UNPRECEDENTED COMPARED WITH ANY OTHER RDT

1. SD Biosensor STANDARD Q COVID-19 Ag Test. 2. Abbott Panbio COVID-19 Ag Rapid Test Device (NASAL) 3. Global Fund, GDF/StopTB, PAHO, UNDP, Unicef, WHO Source: WHO EUL, Malaria Journal (all accessed 15 March 2021)

FIND

COMPRESSED TIMELINES FOR FOR ALL TEST TYPES

- February 2020: LDTs available
- 29 February: first IVD test (CDC) obtained FDA EUA;
 9 total with FDA EUA by end of April 2020
- 3 April 2020: first WHO EUL test listed (Roche); 12 total by end of June 2020

Antibody tests

- 16 March 2020: FDA published guidance permitting developers to market their tests without an EUA provided the test was validated, FDA was notified, and test reports included information about limitations; policy reversed on 4 May 2020
- 15 April 2020: first lab-based test (ELISA) obtained FDA EUA
- 1 April 2020: first RDT obtained FDA EUA

Point-of-care molecular tests

- 20 March 2020: first test obtained FDA EUA (Cepheid Xpert), followed by 27 March 2020 (Abbott ID Now)
- 23 June 2020: first WHO EUL test listed (Cepheid Xpert)

FIND

MOLECULAR TESTS FOR SARS-COV-2

Three main categories of molecular test for SARS-CoV-2; all are performed in labs and rely on sample collection/transport/result return systems to ensure decentralized access to testing

	Lab-developed tests (LDT)	Open, manual kits	Closed, proprietary tests & platforms
Test format and quality	 Lab develops their own testing protocol sourcing basic ingredients separately Lab is responsible for verifying the accuracy of the test and ensuring consistent quality of testing 	 Commercial company supplies a kit with all the basic ingredients and is responsible for ensuring their quality Lab is responsible for ensuring consistent testing quality 	• Commercial company supplies a test where all the basic ingredients are already combined, ensures accuracy and quality of the test and has built-in QC to enable monitoring of consistent test quality
Sample type & extraction	 Viral RNA has to be extracted separately then added to PCR test 	 Viral RNA has to be extracted separately then added to PCR test 	Usually, extraction and PCR reaction are all integrated
Time to result	Minimum 3–5 hours	Minimum 3–5 hours	Minimum 1 hour
Pros	 Usually the fastest to develop in a more experienced lab Not reliant on a particular test supplier 	 Compatible with a range of lab equipment Can leverage existing personnel and infrastructure familiar with PCR 	 Enables more automation ranging from high- throughput centralized testing to lower-throughput more decentralized testing; can leverage existing install-base and trained personnel, if available More built-in QC, therefore higher confidence in quality of results
Cons	 Requires separate nucleic acid extraction More prone to variability and requires QC and QA of test reagents and end-users 	 Requires separate nucleic acid extraction Requires well-trained staff and frequent proficiency testing to ensure quality 	 Requires procurement of new machinery if no existing install-base or new space capacity
Example	Charité protocol, CDC protocol	TIB Molbio, Altona	GeneXpert, Abbott ID Now, Molbio

ANTIGEN AND ANTIBODY TESTS FOR SARS-COV-2

	Antigen (Ag)	Antibody (Ab) IgM or IgG; preferentially IgM & IgG
How does it work	 Directly detects the presence of the virus, indicating ACTIVE infection 	 Detects the body's immune response to the virus, in the form of antibodies, which are present during ACTIVE infection and persist to indicate PREVIOUS infection
Most common uses	 Screen/triage patients who have ACTIVE infection and exclude individuals who are uninfected May be considered to monitor active infection and recovery 	 Identify people who have been exposed to the virus and have immunity* Insufficient data on whether can be used to rule in or rule out ACTIVE infection A positive test in the presence of symptoms is likely consistent with COVID-19
Sample type	 Nasopharyngeal, nasal, or oropharyngeal swab; potentially, oral fluid and stool 	 Finger stick blood, venous blood; potentially, oral fluid
Where & who performs	Trained healthcare workers, wearing appropriate PPE in decord	entralized points of need
Test formats and examples	 Lab-based: manual ELISA, automated immunoassay platforms Decentralized: rapid diagnostic tests (RDTs) 	 Lab-based: manual ELISA, automated immunoassay platforms Decentralized: rapid diagnostic tests (RDTs)

* Insufficient data on the duration/level of protection conferred by immunity

SEQUENCING - VARIANTS OF CONCERN REPORTED GLOBALLY

WHO GUIDE ON GENOMIC SURVEILLANCE HIGHLIGHTS FIVE PRIORITY AREAS FOR SARS-COV-2

Sequencing programme framework

e.g. stakeholder engagement, resource mapping, technical and operational considerations

Sequencing capacity building e.g. validate and compare different sequencing & data analysis strategies, training and technical support

Technology assessment / R&D e.g. identify optimal NGS workflows to facilitate adoption in LMICs, improve and validate tools for rapid NGS data analysis

Advocacy & education e.g. raise public awareness on value of sequencing, training and support for scientists to communicate findings effectively

Bioinformatics & data sharing e.g. improve practices to facilitate rapid data sharing and set up data accreditation standards

IMPACT OF VOC MUTATIONS ON DIAGNOSTIC TARGETS

* Mutation and deletion at same site disputed. 1. Tegally H et al. medRxiv 2020. doi: 10.1101/2020.12.21.20248640; 2. Public Health England. <u>www.gov.uk/government/publications/investigation-of-novel-sars-cov-2-variant-variant-of-concern-20201201</u> (Accessed 4 January 2021)

FIND

3

FIND INDEPENDENT EVALUATIONS

FIND

HIGH-QUALITY STUDIES THROUGHOUT THE

DIAGNOSTICS LIFECYCLE, FROM DISCOVERY TO IMPLEMENTATION

Quality assurance – GXP; FIND is ISO 13485 certified

FIND INDEPENDENT EVALUATIONS TO SUPPORT USE OF COVID-19 TESTS

Antibody rapid test study sites:

- Barcelona Institute for Global Health (IS Global) (Spain)
- BIOASTER Technology Research Institute (BIOASTER) (France)
- Boston Children's Hospital (BCH) (USA)
- Centre Hospitalier Universitaire Vaudois (CHUV) (Switzerland) manual ELISA only
- Liverpool School of Tropical Medicine (LSTM) (UK)
- Ospedale San Raffaele (OSR) (Italy)
- Universidad Peruana Cayetano Heredia (UPCH) (Peru)
- Universidade Federal do Rio de Janeiro (UFRJ) (Brazil)
- University of the Witwatersrand (Wits) (South Africa)
 Washington University in St. Louis (WUSTL) (USA)

Antigen rapid test study sites:

- Apollo Hospitals Chennai and New Delhi (India)
 Centre for the AIDS Programme of Research in South Africa (CAPRISA) (South Africa)
- Charité Universitätsmedizin Berlin (Germany)
- Liverpool School of Tropical Medicine (LSTM) (UK)
- King George's Medical University (KGMU) (India)
- Translational Health Science and Technology Institute (THSTI) (India)
- Universidad Peruana Cayetano Heredia (UPCH) (Peru)
- Universidade Federal do Rio de Janeiro (UFRJ) (Brazil)
- University of Cape Town (UCT) (South Africa)
- University Hospital Heidelberg (UKHD) (Germany)
- University Hospitals of Geneva (HUG) (Switzerland)
- University of Sao Paulo (USP) (Brazil)
- University of the Witwatersrand (Wits) (South Africa)

Molecular test study sites:

 Translational Health Science and Technology Institute (THSTI) (India)
 University Hospitals of Geneva (HUG) (Switzerland)

FIND INDEPENDENT EVALUATIONS MOLECULAR TESTS

EXAMPLE DATA COLLECTED

	Company	Product name	Product number	Gene target	Verified LOD (copies / reaction)	Avg Ct (lowest dilution 10/10)	Clinical sensitivity (50 positives)	Clinical specificity* (100 negatives)	Lot No.	PCR platform**	Supplier recommended Ct cut-off		
1.	1. altona Diagnostics	RealStar® SARS-CoV-2 RT-PCR Kit 1.0	821003/ 821005	E	1–10	35.45	92% (95%CI: 81, 97)	100% (95%CI: 96, 100)	023567	BioRad CFX96 deep well	None; any signal can be considered		
						S	1–10	35.99	92% (95%Cl: 81, 97)	100% (95%CI: 96, 100)			positive
2.	Atila Atila iAMP BioSystems Inc. COVID-19 Detection (isothermal detection)	iAMP- COVID-100- RUO	ORF1ab	50-100	N/A	100% (95%CI: 93, 100)	99%* (95%Cl: 95, 100)	COVID20200320	BioRad CFX96 deep well	Any signal is considered positive (isothermal)			
		detection)		N	1–10	N/A	100% (95%CI: 93, 100)	100% (95%CI: 96, 100)			(isomerinal)		
3.	Beijing Wantai Biological	iing Wantai htai SARS-CoV-2 logical RT-PCR Kit	WS-1248	ORF1ab	1–10	36.20	100% (95%CI: 93, 100)	100% (95%CI: 96, 100)	nCoVP20200305	BioRad CFX96 deep well	≤40		
	Pharmacy Enterprise Co. Ltd		N	1–10	37.12	100% (95%CI: 93, 100)	100% (95%CI: 96, 100)						
4.	BGI Health (HK) Co. Ltd	Real-time Fluorescent RT-PCR kit for detection 2019- nCOV (CE-IVD)	MFG030010	ORF1	1–10	32.43	100% (95%CI: 93, 100)	99%* (95%CI: 95, 100)	6220200305	Roche LightCycler 480	≤38		
5.	bioMérieux SA	ARGENE® SARS-COV-2 R-GENE®[b]	423720 (CE-IVD) 423717	Ν	10–50	36.44	100% (95%CI: 93, 100)	100% (95%CI: 96, 100)	1007989610 1007947520	BioRad CFX96 deep well	Any signal considered as positive		

www.finddx.org/covid-19/sarscov2-eval

Objectives

- Verify analytical sensitivity
- Determine clinical performance

Study design

• Retrospective study using remnant, clinical samples

Status

- Conducted between Feb and Aug 2020 (Europe, Asia)
- Total # tests included: N = 22 manual PCR, N = 2 platformbased tests
- Ongoing work to assess performance against new VOCs

FIND INDEPENDENT EVALUATIONS ANTIBODY TESTS

SENSITIVITY & SPECIFICITY ESTIMATES OBTAINED

www.finddx.org/covid-19/sarscov2-eval

Objective

• Determine clinical performance

Study design

• Retrospective study using remnant, clinical samples

Status

- Conducted from Q2 2020 to Q1-2021 in 10 sites (Europe, N America, S America, Africa)
- Total # tests included: N = 35 RDTs, N = 16 ELISAs

FIND INDEPENDENT EVALUATIONS ANTIGEN RDTS

EXAMPLE RESULTS: STANDARD Q COVID-19 AG TESTS (SD BIOSENSOR)

Clinical	Country	Brazil	Germany	Switzerland
nerformance	Clinical Sensitivity (95%	88.7% (81.3, 93.4);	76.6% (62.8, 86.4);	89% (83.8, 92.7); 191
periornance	CI); N	106	47*	
	Sensitivity days	90.7% (83.3, 95.0);	80% (64.1, 90.1);	89.8% (84.4, 93.4);
	≤7, N	97	35	176
	Sensitivity Ct	91.9% (84.9, 95.9);	87.8% (74.5, 94.7);	91.8% (86.9, 95); 183
	≤33, N	99	41	
	Sensitivity Ct ≤	95.9% (86.3, 98.9);	100% (84.5, 100);	97.2% (92.9, 98.9);
	25, N	49	21	141
	Clinical Specificity (95%	97.6% (95.2, 98.8);	99.3% (98.6, 99.6);	99.7% (98.3, 99.9);
	CI), N	294	1216	338
	Invalid rate (%, n/N)	0%, 0/400	0%, 0/1263	0%, 0/529
	Note:40/47 positives we	re tested using Roche 5	47 positives were tested	using Seegene and 2/47

were tested using TibMolbiol.

Analytical		Lowest dilution detected	Corrected concentration	Viral Copy equivalence	Supplier-reported LOD
performance	Analytical Sensitivity	5.0 x 10 ³ pfu/ml ~ 7.14 x 10 ³ TCID ₅₀ /ml	7.58 x 10 ² pfu/ml	1.15 x 10 ⁶ copies/ml applied to test	1.25 x 10 ^{3.2} TCID ₅₀ /ml ~ 1.39 x 10 ³ pfu/ml
	Note: corr into the pr	ected concentration accou oprietary extraction buffer.	nts for volume of dilu	ition that is absorbed onto t	he swab and then diluted

www.finddx.org/covid-19/sarscov2-eval

Objectives

- Verify analytical sensitivity
- Determine clinical performance

Study design

• Prospective study

Status

- Ongoing in 9 sites (Europe, South America, Africa, Asia)
- Total # tests included: N = 23

FIND

4

THE ANTIGEN RDT SUCCESS STORY

ANTIGEN RDTS ARE AN EASY-TO-USE, AFFORDABLE COMPLEMENT TO MOLECULAR TESTING

Note: The estimated test split was informed by the necessary trade-off between testing accuracy, speed to result, ease of use and affordability and was calculated based on four use cases (triage and confirmation of symptomatic at-risk cases and surveillance of asymptomatic cases). For patient triage, it is assumed that a split of 85% RDT (preferably Ag) and 15% molecular will be used; for surveillance, it is assumed that only antibody RDTs are used; antibody RDTs can be substituted with ELISA.

WHO TARGET PRODUCT PROFILE (TPP) FOR ANTIGEN RDTS

KEY FEATURE	ACCEPTABLE	DESIRABLE
Target use setting	Outside laboratories	Self-administered, or by trained lay workers
Clinical sensitivity	≥80% (initially >70%)	≥90% (initially >80%)
Clinical specificity	≥97%	≥99%
Specimen type	NP, OP, nasal (mid- turbinate), sputum	Nasal (anterior nares), saliva/oral
Time to result	≤40 mins	≤20 mins
Test kit stability	12 mos at 4–30°C	18-24 mos at 4-40°C
Need for equipment	Handheld or benchtop	Not required

For a point-of-care test for suspected COVID-19 cases and their close contacts, to diagnose acute SARS-CoV-2 infection in areas where reference assay testing is unavailable, or turnaround times obviate its clinical utility

Source: WHO Target product profiles for priority diagnostics to support response to the COVID-19 pandemic v.1.0. First published 31 July 2021; revised 28 September 2021

WHO TARGET PRODUCT PROFILE (TPP) FOR ANTIGEN RDTS

KEY FEATURE		DESIRABLE	In development 42	FIND independent	evaluation	of WHO FU
Target use setting	Outside laboratories	Self-administered, or by trained lay workers	In validation 50		CLIN.	CLIN.
Clinical sensitivity	≥80% (initially >70%)	≥90% (initially >80%)		TEST	SENS. %	SPEC %.
Clinical specificity	≥97%	≥99%	Regulatory authorized	Abbott (Panhio)	85-91 [88-93]	>99
Specimen type	NP, OP, nasal (mid- turbinate), sputum	Nasal (anterior nares), saliva/oral	267 WHO EUL	SD Biosensor (STANDARD Q)	77-89 [88-92]	>99
Time to result	≤40 mins	≤20 mins	3	PMC	91	>97
Test kit stability	12 mos at 4-30°C	18-24 mos at 4-40°C		Only studies from same	[94] sites included (0	CH, DE).
Need for equipment	Handheld or benchtop	Not required	Total: 359	Range provided for vario sensitivity for Ct<33. On included. Detailed report www.finddx.org/sarscov.	bus sites. [#] der ly specimens un ts can be found 2-eval-antigen/	ootes der EUL at:

Source: WHO Target product profiles for priority diagnostics to support response to the COVID-19 pandemic v.1.0. First published 31 July 2021; revised 28 September 2021

ANTIGEN RDTS AS SCREENING TOOLS IN DIAGNOSTIC ALGORITHMS

TESTING ALGORITHM FOR ANTIGEN RDT

Source: Country MOH guidelines, representative of most national guidelines for COVID-19 testing;

1. Further evidence generation is required for data-driven advocacy

- With Ag RDT screening and PCR confirmation, most of the positives (2%) can be identified early, isolated, and treated
- 97% of the population can resume economic activity
- Serial testing could mitigate false positivity challenge
- Alternate testing strategies entail a long time to result leading to ineffective followup action and high costs¹

ACT-ACCELERATOR ENABLED ACCESS PACKAGE OF TWO WHO-APPROVED ANTIGEN RDTS BY SEPTEMBER 2020

ACT-ACCELERATOR EOI IMPROVE ACCESS TO ANTIGEN RDTS FOR LMICS

Accelerating development and market entry of improved, quality-assured SARS-CoV-2 antigen RDTs for expanded use in LMICs

Rapidly creating the supply conditions (manufacturing capacity, diversity of supplier base, affordability) to meet the needs of LMICs

EOI FOLLOWED A COMPRESSED TIMELINE FIRST CONTRACTS FINALIZED IN DECEMBER 2020

INVESTMENTS REFLECTED TWO EOI GOALS

Initial investments finalized: US\$2.50/test including price matching agreement and larger supplier base in Q1 2021

Short-term: investments in R&D and tech transfer agreements for lower-cost tests; continued utility improvements with shift to nasal & clearer temperature stability

Global supply of 2.50/test starting Q1 2021, with volumes available of 20M tests/month by Q3 2021

Long-term: strengthening local manufacturing capacity & support for product transfer

Capacity expansion to 80M tests/year (LMICs)

Partnership between established US RDT developer and local Brazilian manufacturer for tech transfer, focusing on LatAm region

Partnership between West African manufacturer and British manufacturer for technology transfer

Premier Medical Corporation (PMC) Investment in manufacturing capacity expansion and automation to scale up low-cost production in exchange for ensured access pricing and test volume for LMICs

ACTIVE INTERVENTIONS HAVE LOWERED THE PRICE OF QUALITY-ASSURED ANTIGEN RDTS FOR LMICS

^{*}WHO Emergency Use Listed Source: Diagnostics Consortium for COVID data as 27 April 2021

MAIN RESEARCH TOPICS REMAINING FOR ANTIGEN RDTS

Technology R&D

Implementation studies and operational research

Less invasive sample types to increase access Is there enough Ag in saliva? Is it complexed with antibodies?

Impact of VOCs in performance

Is there selective pressure for N mutations at immunodominant epitopes?

Need for standards to enable performance comparisons, lot release, and in-country QC

Improved shelf-life to facilitate implementation in harsher environments (e.g. >30°C)

Improved analytical sensitivity (better antibodies, novel detection schemes)

Evidence generation in-country to support policy development

Frequent testing with antigen RDTs to enable a robust test-trace-isolate strategy and support lifting restrictions

Expanded use cases in non-traditional healthcare settings (border crossings, pharmacies, workplaces)

THANK YOU

