Materials and Methods

When you begin writing, start with the easiest

(After the figures are ready)

1. Materials and Methods ↓ 2. Results ↓ 3. Discussion and Introduction ↓ 4. Abstract

Materials and Methods

- Describe your methods with enough detail so that someone else can repeat it.
- Reproducibility!

Materials and Methods: Format

- Look at examples in the journal you are targeting
 - Use of subheadings, bold, italics varies greatly between different journals
 - Determine the level of detail and style
 - Be clear on acceptable abbreviations

Ref: K. LaMarco & R. Ward

Materials and Methods: Format

General (*Subheading* or the 1st sentence of the paragraph)

Specific details (rest of the paragraph)

PCR reactions. A reaction mixture was prepared containing 50 mM KCl, 10 mM Tris, etc.

OR

Sample collection. Serum samples were collected from 300 pregnant adolescents (<19 years old) and 306 pregnant adults (>19 years old).

Materials and Methods: Organization

- In the same order that you present the results
 - Chronologically (not always the best)
 - Begin with what you did first...
 - End with what you did last!
 - The most logical flow of the science
 - Possibly in the order that experiments or other data appear in results

References in Methods

• Can refer to previous paper for methods you developed. But be specific.

EXAMPLE "cells were broken as previously described (9)."

- **BETTER** "cells were broken by ultrasonic treatment as previously described (9)."
- Sometimes, it is good to briefly review the protocol.

"DNA was extracted as previously described (9). Briefly, cells were lysed by ultrasonic treatment and then..."

Examples from public health: two categories of articles

- Epidemiological
 - Field-based studies
- Biochemistry, Immunology, Molecular Biology
 - Laboratory-based studies

Examples from public health: two categories of articles

Epidemiological
 Field-based studies

Biochemistry, Immunology, Molecular Biology

Laboratory-based studies

Example: Epidemiology

Field Studies

- Study Design
- Population and Sites/Location
- Intervention and/or Survey Details
- Statistical Analyses
- Ethical Considerations

Example: Epidemiology

Field Studies

Study design

- What type of design? Prospective cohort? Case control?
- Double-blind clinical trial?
- Population, location, and time period
 - How many subjects or samples?
 - Definitions of cases and controls
 - Inclusion/exclusion criteria/How were the subjects or samples selected?
 - Summarize the demographic characteristics in the results
 - Geographical location? City, Country
 - You can provide a map of the locations if it is relevant
 - When? months and years?

Example: Epidemiology

Field Studies

- Intervention or survey details
 - Sampling/Interviewing methods
 - Laboratory methods: including collection & storage
- Statistical analyses
 - Method of analysis
 - Sample size determination
 - Level of statistical significance
- Ethical considerations
 - Approval by ethical committee to use human or animal subjects

Laboratory-based Studies

- Description of samples, strains
- For each experiment:
 - Reaction conditions
 - Reagents
 - Instruments
 - Name and location of suppliers

Reaction Conditions

- Important to explain what you did so it can be repeated.
 - Not the same as a protocol but similar!!
- How much?
 - 0.5 ul of Taq polymerase
- For how long?
 - Incubated for 10 minutes
- What temperature?
 - Incubated for 10 minutes at 37°C

Reagents

- What was in the reagents?
 - Tris buffer (5 mM NaCl, 5% TRIS, pH 7.6)
 - TE (10 mM Tris-HCI [pH 8.0], 1 mM EDTA)
- Need chemical concentrations in moles or micrograms/milliliters (ug/ml) most of the time.
- Occasionally will have only dilution used.
 - Such as with detergents (0.05% Tween) OR sera (diluted 1:1000 in PBS).

Abbreviations

- Define all reagent abbreviations once (the first time they are used)
 - TE
 - TBE
 - SSC
 - DTT
 - BME

Abbreviations

 Abbreviations for common techniques or buffers are not explained. (such as ELISA or PCR)

• This varies greatly between fields.

CHECK THE JOURNAL FOR LIST OF COMMON ABBREVIATIONS