Analysis by and presented on behalf of GISAID by

Dr Sebastian Maurer-Stroh

Deputy Executive Director (Research)

GISAID

← BII/A*STAR, DBS/NUS, NPHL/NCID

GISAID provisions for analysing Spike mutations

- Single comprehensive source of all outbreak genomes
- Summary and report of clade trends and associated mutations
- Enabling all registered users through dedicated download of all current Spike proteins as well as complete genome alignment
- Spike protein mutation annotation for all entries, common ones in drop down
- Integrated mutation analysis tool CoVsurver:
 - 3D structure mapping
 - Host receptor interaction
 - Antibody interaction
 - Literature phenotype annotation
 - Geotemporal frequency and phylogenetic distribution
- Upcoming: live dashboard for spike mutations
- Needed in near future: serological panel data linked to sequences

Real-time data sharing is not achieved by governmental Regulations

it is incentivized by the confidence in trusted sharing mechanisms

- Spike similarity to other Coronaviruses
- Spike similarity within the outbreak
 - Frequency and trends of most common spike mutations
 - Host receptor binding mutations
 - Antibody binding mutation tool
 - Reinfection pairs comparison

Spike similarity to other coronaviruses

Bat RaTG13 SARS MERS OC43 HKU1 229E NL63 78.2% 35.4% 35.2% 37.1% 36.9% 39.5% 35.3% 35.0% 39.0% 67.0% 41.5% 41.8% 41.8% 43.5% 43.5% 39.7% 37.8% 64.7% 36.2% 36.2% 35.4%

Percent identity of spike glycoproteins from relevant coronaviruses

Monomer

- Spike similarity to other Coronaviruses
- Spike similarity within the outbreak
 - Frequency and trends of most common spike mutations
 - Host receptor binding mutations
 - Antibody binding mutation tool
 - Reinfection pairs comparison

Common spike mutations within the outbreak – Sep 20 2020

CoVsurver:

New analysis tool released on GISAID developed by BII A*STAR

Common spike mutations within the outbreak – May 5 2020

Common spike mutations within the outbreak – Sep 20 2020

- Spike similarity to other Coronaviruses
- Spike similarity within the outbreak
 - Frequency and trends of most common spike mutations
 - Host receptor binding mutations
 - Antibody binding mutation tool
 - Reinfection pairs comparison

Receptor binding surveillance for complete genomes 2020-09-22

New occurrence of receptor binding mutations 25x S477N in Switzerland, 3x S477N in Germany, 1x S477N in Australia/NSW, 4x S477I in England, 2x N439K in Switzerland, 1x N439K in Germany, 1x E484A in Spain

Total: 37 different rare variants near the binding interface not known to be linked to severity with >1x occurrence. 4157x **\$477N** (3709 Australia/NSW, 106 England, 27 Switzerland, 21 Australia/QLD, 13 Scotland, 11 Northern Ireland, 8 Sweden, 8 Australia/SAP, 5 Australia/ACT, 4 USA/FL, 3 Germany, 2 Australia/NT, 1 Lebanon, 1 USA/MA, 1 Australia/TAS, 1 USA/WA, 1 Australia/WA), 737x **N439K** (548 Scotland, 95 Ireland, 38 England, 26 Northern Ireland, 12 Wales, 10 Switzerland, 3 USA/IL, 2 Norway, 1 Germany, 1 Romania, 1 USA/WI), 108x **T478I** (107 England, 1 Spain), 40x **N501Y** (36 Australia/VIC, 1 USA/OR, 1 Wales, 1 Brazil, 1 USA/NY), 38x **G485R** (37 Australia/VIC, 1 Anhui), 30x **\$494P** (17 England, 3 USA/MI, 2 Sweden, 2 Scotland, 2 India, 1 Singapore, 1 Wales, 1 Nigeria, 1 Spain), 20x **G476S** (9 USA/WA, 4 England, 1 USA/OR, 1 Singapore, 1 India, 1 Suriname, 1 USA/WI, 1 Belgium, 1 United Arab Emirates), 19x **E484Q** (12 Wales, 3 India, 2 Spain, 1 South Africa, 1 USA/CA), 18x **G446V** (3 England, 3 Australia/VIC, 2 USA/VA, 2 South Korea, 1 USA/MN, 1 Wales, 1 USA/CA, 1 Scotland, 1 USA/WA, 1 Finland, 1 Israel, 1 Portugal), 15x **\$477I** (7 England, 2 Scotland, 1 Singapore, 1 Indonesia, 1 USA/SC, 1 Colombia, 1 Luxembourg, 1 Australia/VIC), 14x **L455F** (5 England, 2 South Africa, 2 South Korea, 1 Italy, 1 USA/CA, 1 Scotland, 1 USA/MO, 1 Australia/VIC), 13x **R403K** (11 USA/VA, 2 Australia/VIC), 13x **A475V** (3 USA/OR, 2 England, 2 USA/AZ, 2 Australia/VIC, 1 Italy, 1 USA/NY, 1

Mutations in the spike glycoprotein for the 1519 new complete genomes.

We gratefully acknowledge the Authors from Originating and Submitting laboratories of sequence data on which the analysis is based.

Green ... ACE2 human host receptor

Gray ... CoV spike glycoprotein trimer
Gray balls ... Spike glycoprotein variation occurring once (in EpiCoV)
Blue balls ... Spike glycoprotein variation occurring more than once (in EpiCoV)
Red balls ... Spike glycoprotein variation near host receptor with effect history
Orange balls ... Spike glycoprotein variation near host receptor, or other functional annotation
Cyan ... Insertion/deletion
Magenta balls ... Spike glycoprotein variation altering

potential N-glycosylation sites

- Spike similarity to other Coronaviruses
- Spike similarity within the outbreak
 - Frequency and trends of most common spike mutations
 - Host receptor binding mutations
 - Antibody binding mutation tool
 - Reinfection pairs comparison

CoVsurver tool to analyse mutations – example Spike S477N

Receptor

Antibody

interface

binding

- Spike similarity to other Coronaviruses
- Spike similarity within the outbreak
 - Frequency and trends of most common spike mutations
 - Host receptor binding mutations
 - Antibody binding mutation tool
 - Reinfection pairs comparison

Summary of AA differences in 4 reinfection cases

Strainname	Accession	Collection Date	Clade (Lineage)	Spike AA mutations	Other AA mutations
hCoV-19/Hong Kong/HKU-200823- 001/2020	EPI_ISL_516798	2020-03-26	V (B.1.79)	E780Q	NSP3_L1304F, NSP3_P1103L, NSP5_K61R, NSP6_L37F, NS3_G251V, NS8_E64stop
hCoV-19/Hong Kong/HKU-200823- 002/2020	EPI_ISL_516799	2020-08-17	G (B.2)	L18F, A222V, D614G	NSP6_L142F, NSP12_P323L, N_A220V
hCoV-19/Belgium/rega-0309752/2020	EPI_ISL_522349	2020-03-09	GR (B.1.1)	D614G	NSP6_F228L, NSP12_P323L, NS8_L84S, N_G204R, N_R203K
hCoV-19/Belgium/rega-0710751/2020	EPI_ISL_522350	2020-06-10	S (A)	S1055L	NS8_L84S
hCoV-19/USA/NV-NSPHL-A0110/2020	EPI_ISL_514673	2020-04-18	GH (B.1)	D614G	NSP1_L92F, NSP2_T85I, NSP3_A465V, NSP12_P323L, NSP13_V169F, NS3_Q57H
hCoV-19/USA/NV-NSPHL-A0207/2020	EPI_ISL_514674	2020-06-05	GH (B.1)	D614G	NSP2_T85I, NSP6_P44S, NSP12_P323F, NS3_Q57H, N_A398V
hCoV-19/Netherlands/un-EMC- 751/2020	EPI_ISL_523507	2020-04-06	L (B)		NSP2_D268del, NSP13_R392C
hCoV-19/Netherlands/un-EMC- 754/2020	EPI_ISL_523510	2020-06-08	L (B)	<mark>T20N,</mark> T572I	NSP2_D268del, NSP3_S100P, NSP12_T806A, NSP3_T1288I, NSP3_D821N, NSP4_H313Y, NSP13_R392C, M_S4F

4 reinfection cases spike glycoprotein comparison

2 of 4 reinfection cases have mutations possibly interfering with the structural conformation of glycosylation sites in a region that is also broadly recognized by antibodies which would provide a hypothetical mechanism for immune escape potentially contributing to permitting second infection. However, this doesn't apply to all cases and many other factors could play a role too. Importantly, these mutations are rare and occur sporadically without causing large clusters so far.

GISAID provisions for analysing Spike mutations

- Single comprehensive source of all outbreak genomes
- Summary and report of clade trends and associated mutations
- Enabling all registered users through dedicated download of all current Spike proteins as well as complete genome alignment
- Spike protein mutation annotation for all entries, common ones in drop down
- Integrated mutation analysis tool CoVsurver:
 - 3D structure mapping
 - Host receptor interaction
 - Antibody interaction
 - Literature phenotype annotation
 - Geotemporal frequency and phylogenetic distribution
- Upcoming: live dashboard for spike mutations
- Needed in near future: serological panel data linked to sequences

Annex

Spike host receptor changes for nearest bat and nearest pangolin sequences

Strain 1	Strain 2	Spike overall identity	Interface mutations	
Human Wuhan	Bat Yunnan	98%	13 —	
Pangolin Guangdong	Bat Yunnan	90%	13	
Pangolin Guangdong	Human Wuhan	91%	1	

Spike host receptor changes for nearest bat and nearest pangolin sequences

Strain 1	Strain 2	Spike overall identity	Interface mutations	
Human Wuhan	Bat Yunnan	98%	13 —	
Pangolin Guangdong	Bat Yunnan	90%	13	
Pangolin Guangdong	Human Wuhan	91%	1	

List of mutations not displayed in structure I1224V(C-term)

List of variations displayed in structure (nearest residue if in loop/termini region) S32F L50S I/61(77) P2180 D232E T348E T372A T403E K439N H440N H41L A443S E445V F449Y A495 K475T C483V T484E L466F Y490F Y4302 R494S Y489G D540H H659Y K978H A640T ms60P7RA[674.68] S121N

Spin ON Spin OFF Save IMAGE

Select Query Sequence & Reference Sequence to display on 3D Structure Viewer: Query Seg Reference Sequence Submit BetaCoV/pangolin/Guandong/1/2019|EPI_ISL_410721|2019 BetaCoV-2019nCoV/Wuhan/WIV04/2019 . % AA identity: # mutations 91.280% 111 List of mutations not displayed in structure M1L(N-term) V3F(N-term) L5F(N-term) V6L(N-term) L7H(N-term) L8F(N-term) P9A(N-term) N1125S(C-term) V1228I(C-term)

Spike host receptor changes for nearest bat and nearest pangolin sequences

Strain 1	Strain 2	Spike overall identity	Interface mutations
Human Wuhan	Bat Yunnan	98%	13 —
Pangolin Guangdong	Bat Yunnan	90%	13
Pangolin Guangdong	Human Wuhan	91%	1

Spin ON Spin OFF Save IMAGE

Select Query Sequence & Reference Sequence to display on 3D Structure Viewer: Query Seg eference Sequence Submit BetaCoV/pangolin/Guandong/1/2019|EPI_ISL_410721|2019 BetaCoV-2019nCoV/Wuhan/WIV04/2019 . % AA identity: # mutations 91.280% 111 List of variations displayed in structure (nearest residue if in loop/termini List of mutations not displayed in structure region) M1L(N-term) V3F(N-term) L5F(N-term) V6L(N-term) L7H(N-term) L8F(N-term) P9A(N-term) N1125S(C-term) V1228I(C-term)

Spin ON Spin OFF Save IMAGE Spin ON Spin OFF Save IMAGE

Select Query Sequence & Reference Sequence to display on 3D Structure Viewer: Query Sequence: BetaCoV/pangolin/Guandong/1/2019[EPI_ISL_410721|2019 Reference Sequence: BetaCoV-2019nCoV-like/bat/Yunnan/RaTG13/2013 Submit % AA identity: # mutations 90.307% 123 List of mutations not displayed in structure M1L(N-term) V3F(N-term) L5F(N-term) V6L(N-term) L7H(N-term) L8F(N-term) P9A(N-term)

