Pre-/Post Licensure Assessments of COVID-19 Vaccine Efficacy Against Infection & Transmission

With time to address updates from the prior COVAX workshop on Nov 19

Clinical Development & Operations SWAT Team | Thursday December 17, 2020
<table>
<thead>
<tr>
<th>Time (CET)</th>
<th>Topic</th>
<th>Speaker(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:00 – 15:10</td>
<td>Welcome & Meeting Objectives</td>
<td>Jakob Cramer</td>
</tr>
<tr>
<td></td>
<td>Part 1: Correlates of Protection Update</td>
<td></td>
</tr>
<tr>
<td>15:15 – 15:40</td>
<td>Correlates of Protection Update</td>
<td>Peter Dull & Ivana Knezevic</td>
</tr>
<tr>
<td></td>
<td>Part 2: What can we learn from pre-licensure trials?</td>
<td></td>
</tr>
<tr>
<td>15:45 – 16:00</td>
<td>SARS-CoV-2 natural course of infection, viral shedding, virus detection and quantification using PCR and rapid diagnostic tests: Current knowledge and gaps</td>
<td>Christian Drosten</td>
</tr>
<tr>
<td>16:00 – 16:15</td>
<td>Assessment of SARS-CoV-2 antibody responses in the context of natural infection</td>
<td>Viviana Simon</td>
</tr>
<tr>
<td>16:15 – 16:30</td>
<td>Pre-clinical animal studies: evidence from different vaccine platform technologies on infection / duration of viral shedding</td>
<td>William Dowling</td>
</tr>
<tr>
<td>16:30 – 16:40</td>
<td>Planned assessments of infection in phase 2/3 trials</td>
<td>Amol Chaudhari</td>
</tr>
<tr>
<td>16:40 – 16:50</td>
<td>Experience from using weekly PCRs to detect asymptomatic infections</td>
<td>Andrew Pollard</td>
</tr>
<tr>
<td></td>
<td>Part 3: Additional approaches, evidence / post-licensure studies</td>
<td></td>
</tr>
<tr>
<td>16:55 – 17:10</td>
<td>Modelling: impact of vaccine efficacy against disease versus transmission on public health and pandemic curves</td>
<td>Neil Ferguson</td>
</tr>
<tr>
<td>17:10 – 17:25</td>
<td>Observational studies: what can we learn from other vaccines?</td>
<td>Natasha Crowcroft</td>
</tr>
<tr>
<td>17:25 – 17:35</td>
<td>Statistical approaches to studying transmission</td>
<td>Ira Longini</td>
</tr>
<tr>
<td>17:35 – 17:45</td>
<td>Household transmission studies</td>
<td>Adam Finn</td>
</tr>
<tr>
<td>17:45 – 17:55</td>
<td>Phase 2b trial design to assess vaccine efficacy against infection, viral load, and secondary transmission</td>
<td>Holly Janes</td>
</tr>
<tr>
<td>17:55 – 18:25</td>
<td>Panel Discussion</td>
<td>Moderated by Daniel Feikin</td>
</tr>
<tr>
<td>18:25 – 18:30</td>
<td>Wrap Up & Next Steps</td>
<td>Jakob Cramer</td>
</tr>
</tbody>
</table>
Welcome & Meeting Objectives

Jakob Cramer, MD
Head of Clinical Development
Coalition for Epidemic Preparedness Innovations (CEPI)
Context for today’s workshop

Part 1:
- Road to Correlate(s) of Protection: Review updates since the last workshop on Nov 19th 2020
- International Standards for serologic assays

Parts 2 and 3:
- "We need vaccines to control and eventually end this pandemic"
- Vaccines have demonstrated high efficacy against COVID-19 illness (any severity) based on primary endpoints
- But will vaccines be effective against infection and transmission?
 ➢ Will a vaccine effective against infection also be effective against transmission?
 ➢ Will a vaccine without clear efficacy against infection still be effective against transmission?
- What do we know about SARS-CoV-2 infection / transmission?

Part 2: How can we assess infection (/ transmission) pre-licensure? What should be considered for Ph2/3 clinical trial design? --> review diagnostic approaches, endpoints, practical experience etc.

Part 3: How can we assess (infection /) transmission post-licensure? What should be considered for post-introduction observational studies? --> post-introduction modelling, lessons learnt form the past, stats/concepts from post-licensure, ...
Part 1:

Correlates of Protection Update

Moderated By:
Peter Dull, MD
Deputy Director,
Integrated Clinical Vaccine Development,
Bill & Melinda Gates Foundation (BMGF)
Correlates of Protection Update

Peter Dull, MD
Deputy Director, Integrated Clinical Vaccine Development (BMGF)

Ivana Knezevic, PhD
Group Lead, Norms and Standards for Biologicals (HPS/MHP/WHO)
Evolution of Phase III studies

As vaccines receive EUA\(^1\) or licensure and are distributed, structure of Phase III trials will necessarily shift.

Study Design

<table>
<thead>
<tr>
<th>Early Wave 1</th>
<th>Late Wave 1</th>
<th>Wave 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start recruitment: Before Nov 2020</td>
<td>Start recruitment: Before ~Q2 2021</td>
<td>Start recruitment: ~Q2 2021+</td>
</tr>
<tr>
<td>• Placebo-controlled efficacy studies</td>
<td>• Placebo-controlled studies</td>
<td>• Placebo-controlled for new populations</td>
</tr>
<tr>
<td>• 30k-45k+ subjects enrolled</td>
<td>• ?Hybrid approach, able to transition to immunogenicity</td>
<td>• Immunological non-inferiority vs. (comparable) EUA(^{\text{ed}})/licensed product</td>
</tr>
<tr>
<td></td>
<td>• 20-30k+ subjects planned enrollment</td>
<td>• Post-licensure effectiveness required after EUA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• <30,000 subjects enrolled</td>
</tr>
</tbody>
</table>

Subjects / Sites

- **Study Design**
- **Subjects / Sites**
- **Examples**

Early Wave 1
- Adults (and adolescents)
- Settings of high disease Geographies with strong clinical trial capacities

Late Wave 1
- Adults in settings with no EUA\(^{\text{ed}}\) or licensed vaccines OR
- Populations not recommended as priority with available vaccines
- High disease incidence geographies

Wave 2
- Only low-risk groups (young / healthy)
- Previously-vaccinated subjects receiving as boost

1. Emergency Use Authorization (FDA) used synonymously for national conditional / emergency use approval procedures.
Landscape and timing of **early** Phase III VE trials that may contribute data to correlates analyses

<table>
<thead>
<tr>
<th>Developer</th>
<th>Ph III Sites¹</th>
<th>2020</th>
<th></th>
<th>2021</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Jun</td>
<td>Jul</td>
<td>Aug</td>
<td>Sep</td>
<td>Oct</td>
</tr>
<tr>
<td>CanSino</td>
<td>ARG, MEX, CHL, PAK, RUS</td>
<td>Enrollment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gamaleya</td>
<td>RUS, BLR, UAE, VEN, IND</td>
<td>Enrollment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sinopharm</td>
<td>ARG, BHR, EGY, JOR, MOR, PER, UAE</td>
<td>Enrollment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sinovac</td>
<td>BRA, CHL, IDN, TUR</td>
<td>Enrollment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pfizer / BioNTech</td>
<td>USA, ARG, BRA, GER, RSA, TUR</td>
<td>Enrollment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderna</td>
<td>USA</td>
<td>Enrollment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxford / AZ²</td>
<td>BRA, UK, PER, RSA, USA</td>
<td>Enrollment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Janssen</td>
<td>USA, ARG, BRA, CHL, COL, MEX, PER, RSA</td>
<td>Enrollment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Novavax</td>
<td>UK, MEX, RSA (IIb), USA³</td>
<td>Enrollment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Assumptions:
- 6-month attack rate:
 - US, UK: 2%
 - Others: 5%
 - VE: 50%
- Interim analysis: 75 cases
- Primary analysis: 150 cases
- Recruitment / vaccination: 3 mo.
- Follow up for VE endpoint: 2 mo.
- Data mgt & analysis before IA and PA: 1 mo.
- Preparation of correlates report: 2 mo.

1. Where developers are conducting multiple Phase III studies, timeline represents site with predicted earliest readout (bolded), based on public sources (primarily clinicaltrials.gov) and modeled assumptions; 2. Top timeline for Oxford / AZ reflects pooled analysis of Brazil and UK sites, per Phase III interim analysis. 3. Actual start date and study design TBC.
Neutralization titers from Phase I/II suggest threshold of protection may be modest across platforms

Note: Figures have been cropped / re-labeled as needed to enable comparison; Convalescent sera variably sourced from severe, moderate, mild disease and asymptomatic cases

<table>
<thead>
<tr>
<th>Vaccination Platform</th>
<th>Efficacy</th>
<th>Neuts relative to convalescents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pfizer / BioNTech BNT162b2</td>
<td>95%6</td>
<td>3.8-fold higher1</td>
</tr>
<tr>
<td>Moderna mRNA-1273</td>
<td>94.1%6</td>
<td>3.2-fold higher2</td>
</tr>
<tr>
<td>Gamaleya Sputnik V</td>
<td>95%7</td>
<td>1.5-fold higher3</td>
</tr>
<tr>
<td>Sinopharm BBIP-CorV</td>
<td>Comparable4</td>
<td></td>
</tr>
<tr>
<td>Oxford / Astra Zeneca ChAdOx1</td>
<td>Comparable5</td>
<td></td>
</tr>
</tbody>
</table>

1. wt VNA titers (NT50) in subjects aged 18-55, 7 days following 2nd 30µg dose; HCS: n=38, across full range of disease severity. 2. Lentivirus PsVNA titers (ID50) in subjects aged 18-55, 14 days after 2nd 100µg dose; HCS: n=42, across full range of disease severity. 3. wt MNA titers in subjects aged 18-60, 21 days following rAd5-S boost; HCS: mild and moderate cases only. 4. wt VNA titers (50% CPE) in subjects aged 18-59, 28 days after 2nd 4µg dose; convalescent sera range cited in supplement is plotted here for comparison, severity not specified. 5. Monogram lentivirus PsVNA titers in subjects aged 18-55, 14 days after 2nd 5x1010vp dose; HCS: n=146 hospitalized patients and 24 asymptomatic HCWs. 6. Primary analysis. 7. Interim analysis.
Onset of efficacy following first dose of mRNA vaccines suggests threshold, if neuts are primary driver, may be near assay LLOQ

Efficacy data compiled for FDA review of both Pfizer / BioNTech and Moderna vaccines suggest both products effectively protect subjects between first and second doses, when neutralization titers are still very modest

NHP and natural infection studies support evidence that threshold of protection is low for neutralizing titers

Recent non-human primate data

Pseudovirus neutralizing titers of ~50 (adoptively transferred purified IgG) are sufficient to protect naïve macaques from SARS-CoV-2 challenge.

Early natural infection study

IC₅₀ values ~1:161 by lentivirus PsVNA protected against a SARS-CoV-2 outbreak with an 85.2% attack rate aboard American Dynasty fishing vessel.

WHO standards for COVID-19: update from WHO ECBS

Dr Ivana Knezevic, Norms and Standards for Biologicals (WHO/MHP/HPS) and Dr Giada Mattiuzzo, Senior Scientist, NIBSC

17 Dec 2020, workshop on Pre-/Post-Licensure Assessments of COVID-19 Vaccine Efficacy Against Infection and Transmission
Outline of presentation

- Update on WHO standards for Vaccines and other biologicals
 - Outcomes of 71st, 72nd and 73rd ECBS meetings
 - Written standards
 - Measurement standards
 - Research and Review of Scientific evidence
 - COVID-19 related activities
 - Points for discussion
WHO norms and standards for biologicals

Global written standards

Total 103 docs (Recommendations/ Guidelines)
General docs that apply to vaccines & biologicals: 10
General documents that apply to all vaccines: 12
Vaccine specific: 71
BTP specific: 9

Scientific evidence

1) Standardization of assays
2) Further development and refinement of QC tests
3) Scientific basis for setting specifications

Measurement standards: essential elements for development, licensing and lot release
WHO CCs for biological standardization

- Input to COVID-19 related issues in addition to ongoing projects:
 - Measurement standards (NIBSC) with the input from CCs and other labs
 - Written standards
 - Implementation workshops - postponed

- Re-designations:
 1. HC - completed in Nov 2020
 2. NIFDC, NIBSC and PEI - to be completed in 2021

- WHO CC network for standardization of vaccines - HC offered to host meeting in Sep 2020

- Virtual meetings of CCs - planned for 2021

Ivana Knezevic
Main outcomes of 71st and 72nd ECBS meetings in 2020

1. ECBS meeting on 24-28 Aug 2020 (focused on COVID-19): published on WHO web site: https://www.who.int/groups/expert-committee-on-biological-standardization:
 - Executive Summary posted on WHO web site on 2 Sep 2020
 - Guidelines for assuring the quality, safety and efficacy of plasmid DNA vaccines
 (direct link: https://www.who.int/publications/m/item/DNA-post-ECBS-1-sept-2020)

2. ECBS meeting on 19-23 Oct 2020 - update on COVID-19 and non-COVID activities:
 - 3 written standards established (Recommendations on TCV and EV71 and Guidelines on CRP for Dg)
 - 8 new WHO and 3 replacement WHO International reference preparations
 - 13 proposals for new or replacement measurement standards
 - Review of COVID-19 related activities
 - Executive Summary posted on WHO web site on 5 Nov 2020
Main outcomes of 73rd ECBS meeting in 2020

1. ECBS meeting on 9-10 Dec 2020 (focused on COVID-19): published on WHO web site: https://www.who.int/groups/expert-committee-on-biological-standardization:

- Executive Summary posted on WHO web site on 16 Dec 2020:

 https://www.who.int/groups/expert-committee-on-biological-standardization

3 new WHO International reference preparations established

<table>
<thead>
<tr>
<th>Standards for use in public health emergencies</th>
<th>First WHO International Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>SARS-CoV-2 RNA for NAT-based assays</td>
<td>7.40 log_{10} IU/ampoule</td>
</tr>
<tr>
<td>Anti-SARS-CoV-2 immunoglobulin</td>
<td>250 IU/ampoule (neutralizing antibody activity)</td>
</tr>
<tr>
<td>Anti-SARS-CoV-2 immunoglobulin panel</td>
<td>[no assigned units]</td>
</tr>
</tbody>
</table>
Aim:
To facilitate the development, validation and assessment of molecular and antibody assays. This will facilitate the comparability of results from different assays/labs and help harmonize the evaluation of diagnostics, vaccines and other products.

<table>
<thead>
<tr>
<th>Milestone</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Development of measurement standards start</td>
<td>Feb-March 2020</td>
</tr>
<tr>
<td>Sourcing of the candidate material</td>
<td>March-May 2020</td>
</tr>
<tr>
<td>Agreement to proceed with Measurement standards</td>
<td>April 2020</td>
</tr>
<tr>
<td>Formulation of the candidate Standard</td>
<td>June 2020</td>
</tr>
<tr>
<td>Collaborative study</td>
<td>July-Oct 2020</td>
</tr>
<tr>
<td>Progress report to ECBS meeting</td>
<td>Aug 2020</td>
</tr>
<tr>
<td>Data analysis and report published for PC</td>
<td>Oct-Nov 2020</td>
</tr>
<tr>
<td>Establishment by ECBS</td>
<td>December 2020</td>
</tr>
</tbody>
</table>
First WHO International Standard for SARS-CoV-2 RNA (20/146)

Intended use: calibration and harmonisation of NAT assay for the detection of SARS-CoV-2 RNA

- Acid/heat inactivated England isolate with an assigned potency of $7.4 \log_{10}$ IU/ampoule

Approximately 2500 ampoules available for distribution
First WHO International Standard for anti-SARS-CoV-2 immunoglobulin (20/136)

Pool of COVID-19 convalescent plasma from 11 donors from UK

0.25 mL plasma per ampoule, freeze-dried

Candidate IS was scored as one of the top three highest titre samples in every assay

Expression of the titre as relative to the candidate IS reduced inter-laboratory variation in both neutralisation assay and IgG-based ELISA

Assigned potency of 250 IU/ampoule for neutralising antibody activity

But can be used as reference reagent for calibration of assays detecting binding antibody
Reference Panel will comprise 4 pools of COVID-19 convalescent plasma and a negative; freeze-dried equivalent of 0.25 mL

High (NIBSC code 20/150)
Mid (NIBSC code 20/148)
Low S, high N (NIBSC code 20/144)
Low (NIBSC code 20/140)
Negative (NIBSC code 20/142)

The candidate Reference Panel samples were ranked similarly in almost all the assays used with very few exceptions.

No unitage will be assigned for the Reference Panel, but representative data from CS include in IFU.
Distribution of the WHO International Standards for:

SARS-CoV-2 RNA for NAT assay cat no. 20/146
Anti-SARS-CoV-2 immunoglobulin (human) cat no. 20/136
Anti-SARS-CoV-2 immunoglobulin panel cat no. 20/268

Will be available for distribution by beginning of January 2021 at www.nibsc.org

Create an account to avoid delays with the order. Any issues contact Standards@nibsc.org
COVID-19 related activities - brief overview

1. Written standards
 - Guidelines on DNA vaccines (available since Sep 2020)
 - Regulatory considerations on RNA vaccines and to mAbs for infectious diseases (eg, COVID-19, RSV) - ongoing

3. Research and Review of Scientific evidence
 - Working Group has been established to investigate potential factors in the observed in vitro genetic instability of SARS-CoV-2 viruses during propagation in different mammalian cell lines. Although this issue is not currently regarded as part of biological standardization activities, it may impact on future WHO guidance on the production and evaluation of COVID-19 vaccines and other biological products.
 - WG on standards and assays as well as on animal models
 - Review of COVID-19 vaccines under development with the aim to identify need for standards and technical assistance
Cross cutting issues in the context of ACT-A

1. **Vaccine pillar (COVAX):**
 - International Standards and input to various WGs set up by WHO and partners
 - Input to WHO PQ EUL assessment: WHO standards referred in the criteria for EUL, input to PQ meetings with vaccine manufacturers
 - Collaboration between WHO Expert Committee and EAG: ECBS, SAGE and GACVS

2. **Dx Pillar:**
 - Antigen standard, antibody standard and reference panel

3. **Tx pillar:**
 - mAbs under development and application of guiding principles for biotherapeutics to mAbs for COVID-19
 - Safe blood supply:
 - WHO interim guidance on maintaining a safe and adequate blood supply during the pandemic, and on the safe collection of CCP - subject of review and update
 - It is essential that virus neutralizing antibody levels are standardized to facilitate consistent treatment. ECBS expressed strong view that that CCP should be calibrated in IU as soon as the antibody standard became available.
Points for discussion:

1. What kind of standards are most needed for COVID-19 vaccine development?

2. Measurement standards - users to be aware of the need to use IS to calibrate secondary standards for COVID-19: webinars in Q1 and Q2 2021 and Manual for calibration of secondary standards

3. Other issues
Acknowledgements

NIBSC

EV group, Virology
Emma Bentley
Mark Hassall
Stephanie Routley
Samuel Richardson
Mark Page
Nicola Rose

IDD Division

CFAR

Statistics group

Standard Production Division

NGS team

Collaborative Study Participants

CEPI

Valentina Bernasconi
Paul Kristiansen
Celine Gurry

University of Liverpool-
ISARIC4C
Calum Semple
Lance Turtle

Royal Papworth Hospital,
NHS Foundation Trust
Helen Baxendale

NHSBT
Heli Harvala Simmonds
Robert Davis
Kevin Cavanagh

Oslo University Hospital
Arne Broch Brantsaeter
Lise Sofie Haug Nissen-Meyer

WHO CC
Ivana Knezevic
Tiequin Zhou
Ute Ströher
Irena Prat
Deirdre Healy
Many thanks to:

...team (NSB/TSS/HPS/MHP/WHO)

...members of WHO drafting and Working Groups

...colleagues from Collaborating Centers and Custodian Laboratories

...many individual experts

Further information and contact

Biological standardization website: www.who.int/biologicals

Dr Ivana Knezevic (email: knezevici@who.int)

on behalf of NSB/TSS team
Thank you
Part 2:

What can we learn from pre-licensure trials?

Moderator By:
Jakob Cramer, MD
Head of Clinical Development
Coalition for Epidemic Preparedness Innovations (CEPI)
SARS-CoV-2 natural course of infection, viral shedding, virus detection and quantification using PCR and rapid diagnostic tests: Current knowledge and gaps

Christian Drosten, MD, PhD
Professor of Virology
Charité, Berlin
Viral shedding
Temporal dynamics in viral shedding and transmissibility of COVID-19

He, Nat Med 2020
c

Serial interval

Time of transmission

Incubation time

He, Nat Med 2020
Viral shedding in Munich case cluster

Wölfel, Nature 2020
Transmission vs. cell culture isolation success

Wölfel et al. (9 patients, early Munich cohort)
Isolation rate goes below 20% (positive cultures / cultures) from ca. day 9 after symptoms onset.

Van Kampen et al. (129 patients, Erasmus MC, Rotterdam)
Isolation rate below 20% from ca. day 8.

Perera et al. (35 patients, Hong Kong)
Isolation rate below 3/11 positive cultures from ca. day 8.

Singanayagam et al. (253 patients, UK)
Isolation rate below 20% from ca. day 8.

Arons et al. (NEJM, 57 Patienten, Seniorenheim, USA)
Isolation successful up to day 9.

Viral load vs cell culture
Viral load in first test
Ca. 15,425 positive subjects out of 341,316 tested

PAMS: Pre-, asymptomatic, mildly symptomatic

Jones et al., unpublished
Sychronized viral load courses in multi-tested patients (n = ca. 1900)

Jones et al., unpublished
Probability of successful virus isolation as a lab surrogate of infectivity
Serial interval

Time of transmission

Incubation time

Empirical time of diagnosis (lab results back)
laborbasierte Surveillance SARS-CoV-2, KW39-KW50, Datenstand 15.12.2020

Tage zwischen Abnahme und Test

Anteil

Kalenderwoche der Testung

Tage

>=5
4
3
2
1
0
Antigen point of care tests: limits of detection

<table>
<thead>
<tr>
<th>Assay<sup>a</sup></th>
<th>N. of tested samples</th>
<th>50% positive AgPOCT results</th>
<th>95% positive AgPOCT results</th>
<th>95% mean hit rate $X_{0.125}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>105</td>
<td>5.61 (5.27 - 5.95)</td>
<td>7.45 (6.79 - 8.20)</td>
<td>6.55 copies/swab</td>
</tr>
<tr>
<td>II<sup>c</sup></td>
<td>45</td>
<td>9.51 (8.84 - 12.26)</td>
<td>11.10 (9.71 - 17.01)</td>
<td>10.20 copies/swab</td>
</tr>
<tr>
<td>III<sup>f</sup></td>
<td>105</td>
<td>4.48 (3.41 - 5.32)</td>
<td>7.27 (6.27 - 8.40)</td>
<td>6.37 copies/swab</td>
</tr>
<tr>
<td>IV</td>
<td>105</td>
<td>7.60 (7.37 - 7.82)</td>
<td>8.36 (8.00 - 8.76)</td>
<td>7.46 copies/swab</td>
</tr>
<tr>
<td>V</td>
<td>105</td>
<td>5.40 (4.99 - 5.77)</td>
<td>7.22 (6.57 - 7.96)</td>
<td>6.32 copies/swab</td>
</tr>
<tr>
<td>VI</td>
<td>105</td>
<td>7.19 (6.97 - 7.43)</td>
<td>7.87 (7.52 - 8.23)</td>
<td>6.97 copies/swab</td>
</tr>
<tr>
<td>VII</td>
<td>115</td>
<td>5.64 (5.28 - 6.00)</td>
<td>7.68 (6.96 - 8.50)</td>
<td>6.78 copies/swab</td>
</tr>
</tbody>
</table>

^aI: Abbott Panbio™ COVID-19 Ag Rapid Test; II. RapiGEN BIOCREDIT COVID-19 Ag; III: Healgen® Coronavirus Ag Rapid Test Cassette (Swab); IV Coris Bioconcept Covid.19 Ag Respi-Strip; V: R-Biopharm RIDA®QUICK SARS-CoV-2 Antigen; VI NAL von minden; NADAL COVID19-Ag Test; VII: Roche/SD Biosensor SARS-CoV Rapid Antigen Test

Corman, MedRxiv, 2020
How sensitive are antigen point of care tests towards the end of the first week of symptoms?

A glance at preprints.

Christian Drosten and Victor Corman, Charité – Universitätsmedizin Berlin, Institute of Virology

over the first week of symptoms. The overall impression is that sensitivity toward the end of the first week is only slightly lower than during the first four or five days, with missing data and/or rapid decline of sensitivity during the second week. All studies suggest that sensitivity is mainly determined by viral load (i.e., we could not recognize signs of other influencing factors such as time independent of viral load, although we could not conduct formal analyses).

- https://virologie-ccm.charite.de/fileadmin/user_upload/microsites/m_cc05/virologie-ccm/dateien_upload/20201208-AgPOCT_Preprints.pdf
Mina, NEJM 2020
<table>
<thead>
<tr>
<th>Pathogen</th>
<th>N</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adenovirus</td>
<td>9</td>
<td>-</td>
<td>-</td>
<td>1(^\circ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bocavirus</td>
<td>9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>HCoV-NL63</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HCoV-OC43</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Entero/Rhinovirus</td>
<td>9</td>
<td>-</td>
<td>-</td>
<td>1(^\circ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Influenzavirus A H1</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>2(^\circ)</td>
<td>-</td>
<td>1(^\circ)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Influenzavirus A H3</td>
<td>9</td>
<td>-</td>
<td>-</td>
<td>2(^\circ,c)</td>
<td>-</td>
<td>1(^\circ)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Influenzavirus B</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metapneumovirus</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Parainfluenzavirus 1</td>
<td>8</td>
<td>-</td>
<td>-</td>
<td>3(^\circ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Parainfluenzavirus 2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>2(^\circ,c)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Parainfluenzavirus 3</td>
<td>10(^\circ)</td>
<td>-</td>
<td>-</td>
<td>1(^\circ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1(^\circ)</td>
</tr>
<tr>
<td>RSV-A</td>
<td>7</td>
<td>1(^\circ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RSV-B</td>
<td>7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mycopla. pneumon.</td>
<td>8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Legion. Pneumophila</td>
<td>7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>1</td>
<td>0</td>
<td>12</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

\(^\circ\) Positive results for SARS-CoV-2, SARS-CoV, MERS-CoV, or COVID-19.
<table>
<thead>
<tr>
<th>AgPOCT<sup>a</sup></th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
</tr>
</thead>
<tbody>
<tr>
<td>False positives</td>
<td>-</td>
<td>-</td>
<td>3<sup>c</sup></td>
<td>-</td>
<td>5<sup>c</sup></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Specificity (%)<sup>b</sup></td>
<td>100</td>
<td>100</td>
<td>91.42</td>
<td>100</td>
<td>82.86</td>
<td>97.12</td>
<td>97.12</td>
</tr>
</tbody>
</table>

^aI: Abbott Panbio™ COVID-19 Ag Rapid Test; II. RapiGEN BIOCREDIT COVID-19 Ag; III: Healgen® Coronavirus Ag Rapid Test Cassette (Swab); IV Coris Bioconcept Covid.19 Ag Respi-Strip; V: R-Biopharm RIDA®QUICK SARS-CoV-2 Antigen; VI NAL von minden; NADAL COVID19-Ag Test; VII: Roche/SD Biosensor SARS-CoV Rapid Antigen Test;

^bIn 35 subjects, 30 conducting nasopharyngeal swabs and 5 conducting pharyngeal swabs

^cOne person tested false positive in assays III and V

Corman, MedRxiv, 2020
Testing for infectivity

- End of first week = end of transmission (in most patients)
- End of first week = 20% isolation success = 10E6-7 copies per mL
- 10^6-7 copies per mL = AgPOCT limit of detection
- AgPOCT can provide assessment of infectivity
- Quantitative RT-PCR can provide assessment of infectivity
- Adapted RKI recommendations in place since Dec 2nd, 2020
- Discharge based on viral load <10^6, two consecutive samples and known late time in course (particularly ICU patients)
Assessment of SARS-CoV-2 antibody responses in the context of natural infection

Viviana Simon, MD, PhD
Professor of Microbiology and Medicine
Icahn School of Medicine, NY
Assessment of SARS-CoV-2 antibody responses in the context of natural infection
Overview of today’s talk

- Intricacy of COVID19 serology
- Comparison of SARS-CoV-2 antibody tests
- Persistence of SARS-CoV-2 antibodies
 - Durability of antibody responses
 - Seroconversion of a City
- Conclusions
Target antigens for SARS-CoV-2 immune responses and vaccines

(Shrock et al., Science 2020)
Multiplex assay to detect antibodies against seasonal coronavirus, SARS-CoV-1 or SARS-CoV2

Majdoubi et al., medRxiv preprint doi: https://doi.org/10.1101/2020.10.05.20222020; Oct 7, 2020
Dynamics of antibody responses following infection with SARS-CoV-2

Meso-Scale Discovery assay, 1163 samples from 349 participants, follow-up: 7 months

- Full-length Spike: Half-life: 126 days
- Spike RBD only: Half-life: 102 days
- Nucleoprotein (N): Half-life: 60 days

Seven months after symptom onset, 75% of participants still had N-antibodies compared to 99% being positive for Spike antibodies

A head-to-head benchmark comparison of SARS-CoV-2 immunoassays

Manufacturers report comparable sensitivity and specificity for each assay. 976 known negative and 536 known positive samples were tested in parallel.

(The National SARS-CoV-2 Serology Assay Evaluation Group, Lancet Infectious Disease, 2020)
Serology – Spike versus N antibodies

- **Antibodies to Spike protein**
 - Large protein (1273 aa) = more epitopes
 - External viral protein
 - Neutralizing and non-neutralizing activities
 - Limited cross-reactivity with seasonal coronaviruses
 - Fails to distinguish natural infection from vaccination

- **Antibodies to N protein**
 - Smaller protein (419aa) = fewer epitopes
 - Internal viral protein
 - Non-neutralizing
 - Cross-reactivity with seasonal coronaviruses
 - “Sero-reversion”
 - Identifies natural infection in individuals that received a Spike vaccinated
A serological assay to detect SARS-CoV-2 seroconversion in humans: Mount Sinai Ab Test

The use of two sequential assays (1. RBD; 2. Full length Spike) reduces the false positive rate and favors high specificity resulting in a sensitivity of 95% and specificity of 100%

Amanat et al., Nat. Med. 2020
SARS-CoV-2 spike antibody titers in >30,000 individuals (MSSM)

(Wajnberg et al., Science 2020)
Spike antibodies levels are maintained five months after symptom onset (N=150)

(Wajnberg et al., Science, 2020)
Neutralizing activity of serum samples in relation to antibody titers (MSSM ELISA)

(Wajnberg et al., Science 2020)
Retrospective, repeated cross-sectional analysis of SARS-CoV-2 seroprevalence

- Goal: To determine the true infection rates in NYC in order to assess how close we are to potential ‘community immunity’
- We collected >10,000 plasma samples from MSH patients
 - Residual EDTA-anticoagulated blood specimens remaining after standard of care testing (MSH Blood Bank)
 - Samples released 3 weeks after collection
- Two groups
 - ‘urgent care’ group (‘UC’, enriched for acute SARS-CoV-2 infections). N=4,101
 - ‘routine care’ group (‘RC’, more closely representing the general population). N= 6,590
Confirmed cases & deaths in NYC in the early weeks of the SARS-CoV-2 epidemic

(Stadlbauer et al., Nature 2020)
SARS-CoV2 antibody prevalence in the Urgent Care versus the Routine care groups (Feb 9 to July 5, 2020)

((Stadlbauer et al., Nature 2020))
Full-length spike antibody titers in the Urgent Care versus the Routine care groups (Feb 9 to July 5, 2020)

(Urgent Care group (+ control))

(Routine Care group (general population))

(Stadlbauer et al., Nature 2020)
Conclusions

- Spike antibodies levels mounted upon natural SARS-CoV2 infection correlate with virus neutralization and remain stable over months.

- Seroprevalence data generated before, during and after the first wave of the SARS-CoV2 infections in NYC suggests:
 - The seroprevalence in the RC group (20%) falls significantly below the threshold for potential community immunity.
 - Based on the population of NYC (8.4 million), we estimate that app. 1.7 million New Yorkers have been infected with SARS-CoV2.
 - Infection fatality rate IFR: 0.97% (2009 H1N1 pandemic: IFR 0.01% and 0.001%!).

- We will continue the seroprevalence study to cover the second wave in NYC as well as the introduction of the vaccines.
Serology – vaccination versus infection

- **Vaccination**
 - Relatively homogenous response (judging from data from the Pfizer and Moderna trials)
 - For the majority of vaccines, there will be a spike only responses (except inactivated vaccines)
 - No mucosal sIgA responses (IgG & monomeric IgA maybe found in saliva)
 - Duration: unknown

- **Infection**
 - Heterogeneous response in general
 - Strong anti-Spike and anti-NP antibody responses
 - Some responses to other proteins like ORF8
 - Mucosal slgA response
 - Duration: potentially long-lived
Acknowledgements

Bakel lab
Ana Silvia Gonzalez
-Michele
Mitchell Sullivan
Ajay Kumaresh
Jayeeta Dutta
Zenab Khan
Adriana van de Guchte
Marilyn Chung
Deena Altman
Brianne Ciferri
Bremy Alburquerque
Jose Polanco

Infection Prevention (MHS)
Gopi Patel
Sarah Schaefer

Employee Health
Ismail Nabeel
Deena Altman
Sean Liu
Sarah Rahman
Erna Kojic
Judy Aberg

Simon Lab
Hala Alshammary
Angela Amoako
Katie Beach
Carolina Bermudez
Charles Gleason
Elena Hirsch
Denise Jurczyszak
Eun Hye Kim
Giulio Kleiner
Wanni Mendez
Ben Mulder
Kayla Rousso
Miti Sakse
Ashley Salimbangon
Komal Srivastava
Levy Sominsky
Amber Shin
Mahmoud Awawda
Rachel Chernet
Lilly Eaker
Emily Ferreri
Sayahi (Shy) Suthkaran
+ lots of volunteers

Krammer Lab
Fatima Amanat
Jessica Tan
Daniel Stadlbauer
Juan MC Quiroz
Guha Asthagiri Arunkumar
Christina Capuano
Kaijun Jiang

Leadership
Peter Palese
Carlos Cordon-Cardo
Andrew Kasarskis
Eric Nestler
Dennis Charney
Shirish Huprikar
David Reich

Ania Wajnberg & the Mount Sinai Plasma donation program

Pathology Department
Adolfo Firpo
Rao Mendu
Jeffrey Jhang
Shelcie Fabre
Melissa Gitman
Matthew Hernandez
Michael Nowak
Alberto Paniz-Mondolfi
Emilia Mia Sordillo

Karina Luksza
Denis Ruchnewitz

Fernandez-Sesma lab
Dabeiba Bernal
Irene Sanchez-Martin

Palese Lab
Weina Sun

García-Sastre lab
Randy Albrecht
Claire Liu
Nacho Mena
Lisa Miorin
Thomas Kehr
Teresa Aydillo

ICahn School of Medicine at Mount Sinai
Institutional & philanthropic funding

CIVICs
75N93019C00051

Luksza Lab
Karina Luksza

IMPAC
3U19AI118610-06S1

Seronet
HHSN272201400008C
75N91019D00024, 75N91020F00003

Program for the Protection of Human Subjects (PPHS)

ISMMS Seq. Core
Melissa Smith
James Powell
Nancy Francoeur
Ethan Ellis
Bobby Sebra
Help crush COVID-19!
Support the Microbiology Department at ISMMS
Pre-clinical animal studies: evidence from different vaccine platform technologies on infection / duration of viral shedding

William Dowling, PhD
Non-Clinical Vaccine Development Leader
CEPI
Pre-clinical animal studies

Evidence from different vaccine platform technologies on infection / duration of viral shedding

William Dowling
Non-clinical vaccine development leader
CEPI

17 December 2020
- SARS-COV-2 models
 - Species
 - Infectious dose
 - Transmission models
 - Re-infection studies
- Vaccine protection studies
SARS-CoV-2 vaccine pre-clinical models

- **Mice** – for SARS-CoV-2, one must change the mouse or change the virus
 - hACE2 (transgenic, knock-in, transient transfection), adapted virus
 - Disease ranges from mild to uniform lethality depending on the approach

- **Ferrets** - infected ferrets show few or no clinical signs but demonstrate high viral shedding and are good transmission models

- **Hamsters** – infected Golden Syrian hamsters demonstrate weight loss and other clinical signs, high viral load in lungs and significant lung pathology

- **NHPs** – AGMs, rhesus macaques and cynomolgus macaques have relatively mild disease, with variable clinical signs, pneumonia by chest x-ray or CT scan, viral shedding, viral load in lung and lung pathology
Infection and viral shedding readouts

- Recovery of live virus – assessed by Plaque assay or CPE based assay

- Genomic RNA by RT-PCR – measures all virus, including the input virus, which may remain for some time, especially at high challenge doses

- Subgenomic RNA by RT-PCR – measures a viral replicative intermediate, so does not count input virus, only replicating virus
In initial development of disease models, very high doses were used ($10^5 - 10^6$ PFU or TCID$_{50}$).

In several models, disease severity was shown to be dose dependent, but very few studies have assessed infectious dose.

One recent study calculated the ID$_{50}$ to be 5 TCID$_{50}$ in the hamster.
SARS-CoV-2 Transmission can occur by direct contact or airborne

Richard et al 2020
SARS-CoV-2 shedding in ferret transmission study

- Throat (black), nasal (white) and rectal (grey) swabs collected from donor ferrets (bars; left panels), direct contact ferrets (circles; left panels) and indirect recipient ferrets housed in separate cages (squares; right panels)

- TCID50 equivalent (eq) were calculated from a standard curve of serial dilutions of the SARS-CoV-2 viral stock.
Studies in multiple species have demonstrated protection from re-infection

- Rhesus macaque re-infection study:
 - Group 1 N=3 1x10^6 PFU SARS-CoV-2
 - Group 2 N=3 1x10^5 PFU SARS-CoV-2
 - Group 3 N=3 1x10^4 PFU SARS-CoV-2

- All animals re-challenged 35 days post infection

Chandrashekar et al 2020
Rhesus re-infection Study

Primary Challenge

Re-Challenge

BAL

Nasal swabs

Chandrashekar et al 2020
Vaccine protection studies

- Several vaccines demonstrate protection against disease but do not completely protect against viral shedding in the upper respiratory tract, leaving the possibility of viral transmission.
- This is seen in multiple vaccine platforms including RNA, viral vectors, subunit protein and whole viral inactivated vaccines.
- A few vaccines show lack of shedding in the upper respiratory tract, indicating potential to block transmission.
Vaccine Protection: Moderna

a. Two Doses mRNA-1273 Lung Viral Load
b. Two Doses mRNA-1273 Nasal Turbinates Viral Load
c. One Dose mRNA-1273 Lung Viral Load

Corbett et al 2020a
Vaccine Protection: Moderna

A Lung Viral Load

- **B** Nasal Turbinate Viral Load

- **Corbett et al 2020a**
Vaccine Protection: Moderna

A Subgenomic RNA in BAL Fluid

B Subgenomic RNA in Nasal Swabs

Corbett et al 2020b
Vaccine protection - Sinovac

Gao et al 2020
Vaccine protection - Clover

Liang et al 2020
Vaccine protection – AstraZeneca/Oxford
Vaccine protection - Novavax

E Subgenomic RNA in BAL Fluid

F Subgenomic RNA in Nasal Swab

Guebre-Xabier et al 2020
Vaccine protection - Janssen
Vaccine protection - Janssen

Log PFU / Swab

Sham, tPA.S, tPA.S.PP, S, S.dCT, tPA.WT.S, S.dTM.PP, S.PP

Mercado et al 2020
Summary

- Mice, hamsters, ferrets and NHPs have been used to assess vaccine efficacy and infectious dose appears to be low.
- Transmission has been demonstrated by direct contact in several models and by indirect contact/airborne transmission in ferrets.
- Transmission from vaccinated animals has not been directly assessed; however, several vaccines protect against disease but do not completely protect against viral shedding in the upper respiratory tract, allowing the possibility of transmission.
Planned assessments of infection in Phase 2/3 trials

Amol Chaudhari, MD
Clinical Development Lead
CEPI
Overview of infection & transmission prevention assessment in ongoing COVID-19 vaccine clinical development programs

Amol Chaudhari, CEPI

17 December 2020
Assessment of infection prevention

Publicly available CT protocols of VE trials

<table>
<thead>
<tr>
<th>Element</th>
<th>Moderna (US trial)</th>
<th>BNT/Pfizer (US trial)</th>
<th>AZ (US trial)</th>
<th>Janssen (US trial)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessed?</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Endpoint#</td>
<td>Secondary: SARS-CoV-2 infection in the absence of symptoms defining COVID-19</td>
<td>Exploratory: Participants with the immune response for N-protein antibody</td>
<td>Secondary: Participants with post-treatment response for N-protein antibodies over time</td>
<td>Secondary: Post-vaccination serologic conversion in an N-protein dependent assay</td>
</tr>
<tr>
<td>Method</td>
<td>Post vaccination [seroconversion]* to N-protein antibodies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analysis population</td>
<td>Baseline seropositive & seronegative both</td>
<td>Only baseline seronegative</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timepoints</td>
<td>D 57 or later</td>
<td>D 28, 180, & 1 Y & 2 Y</td>
<td>D 57, 90, 180, & 1 Y & 2 Y</td>
<td>D 71, 6 M, & 1 Y</td>
</tr>
<tr>
<td>Stat test</td>
<td>Cox-proportional hazard</td>
<td>Clopper-Pearson method</td>
<td>Clopper-Pearson method</td>
<td>Poisson regression</td>
</tr>
<tr>
<td>Results</td>
<td>Not available publicly</td>
<td>Not available publicly</td>
<td>Not available publicly</td>
<td>Not available publicly</td>
</tr>
</tbody>
</table>

N-protein: Nucleocapsid protein, which is an antigen not contained in above vaccines. Abs specific to SARS-CoV-2 N-protein if detected in trial participants are indicative of natural infection thus allowing distinction from vaccine induced Abs.

* - Defined as 1) detectable post vaccination serum antibodies in baseline seronegative participants OR 2) four fold rise in post vaccination titers compared to baseline in baseline seropositive participants
Assessment of infection prevention

Publicly available CT protocols of VE trials

<table>
<thead>
<tr>
<th>Element</th>
<th>Novavax (UK trial)</th>
<th>Curevac (multi country)</th>
<th>Butantan (Brazil)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessed?</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Endpoint#</td>
<td>Exploratory: Occurrence of serologic conversion (by serology to SARS-CoV-2 N protein)</td>
<td>Secondary^: Occurrence of seroconversion to the N protein of SARS-CoV-2</td>
<td>Secondary$: Incidence of symptomatic or asymptomatic infections detected serologically and/or virologically</td>
</tr>
<tr>
<td>Method</td>
<td>Post vaccination seroconversion* to N-protein antibodies</td>
<td>RT-PCR or Four-fold rise in IgG</td>
<td></td>
</tr>
<tr>
<td>Analysis population</td>
<td>Only baseline seronegative</td>
<td>All trial participants</td>
<td></td>
</tr>
<tr>
<td>Timepoints</td>
<td>D 35 & 3M, 6M, 12 M post dose 2</td>
<td>D 211 and/or D 393</td>
<td>Week 6, 13 & 6M, 9M, 12M</td>
</tr>
<tr>
<td>Stat test</td>
<td>Clopper-Pearson method</td>
<td>Relative case reduction</td>
<td>Cox-proportional hazard</td>
</tr>
<tr>
<td>Results</td>
<td>Not available publicly</td>
<td>Not available publicly</td>
<td>Not available publicly</td>
</tr>
</tbody>
</table>

- *Novavax protocol also includes an endpoint to assess efficacy against symptomatic + asymptomatic infections

^ - *If primary and severe disease endpoint are not met, it will be considered as exploratory endpoint

$: - *Asymptomatic infections are not being looked at separately

* - *Defined as detectable post vaccination serum antibodies in baseline seronegative participants
Assessment of infection prevention

Oxford vaccine trials (non-US)

<table>
<thead>
<tr>
<th>Element</th>
<th>COV002 (UK)</th>
<th>COV005 (S Africa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessed?</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Endpoint</td>
<td>Exploratory: PCR positive SARS-CoV-2 asymptomatic infection</td>
<td>Exploratory: VE in preventing asymptomatic SARS-CoV-2 infection (virologically) & VE for seroconversion in N-protein IgG Assay</td>
</tr>
<tr>
<td>Method</td>
<td>Virological confirmation (RT-PCR or other NAAT) of self-collected swab sample</td>
<td>RT-PCR or Seroconversion</td>
</tr>
<tr>
<td>Analysis population</td>
<td>All feasible participants^</td>
<td>All participants for virological confirmation Baseline seronegative for serological</td>
</tr>
<tr>
<td>Timepoints</td>
<td>Weekly throughout the study.</td>
<td>Day 7, 14, 28, 35, 42, 56, 182, 364</td>
</tr>
<tr>
<td>Stat test</td>
<td>Poisson regression model</td>
<td>Poisson regression model</td>
</tr>
</tbody>
</table>
| **Results*** | Yes. VE was reported for:
- LD-SD regimen: 58·9% (1·0 to 82·9)
- **SD-SD regimen: 3·8% (−72·4 to 46·3)**
- Overall: 27·3% (−17·2 to 54·9) | No |

* Voysey et al. 08 Dec 2020, Lancet.
The trial in Brazil COV003 did not assess asymptomatic infection
^ Weekly swab collection was done at only few sites as per feasibility
LD-SD – Low dose followed by standard dose; SD-SD – Two standard doses; NAAT – nucleic acid amplification test
Assessment of infection prevention

Data from clinical trial registries (protocols not available publicly)

<table>
<thead>
<tr>
<th>Developer</th>
<th>Serology (Anti-N Ab)</th>
<th>Virological (PCR/ NAAT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bharat Biotech [NCT04641481]</td>
<td>-</td>
<td>Monthly NP swab for RT-PCR in subset (n=10,000)*</td>
</tr>
<tr>
<td>Gamaleya Institute [NCT04530396]</td>
<td>Y</td>
<td>-</td>
</tr>
<tr>
<td>Medicago [NCT04636697]</td>
<td>Y</td>
<td></td>
</tr>
</tbody>
</table>

There are other ongoing efficacy trials of COVID-19 vaccine candidate but information on asymptomatic infection within those programs is not available publicly

* - Information from a personal communication
Assessment of transmission prevention

• Efficacy against infection transmission prevention can be assessed via
 • Specially designed studies (e.g. household contacts of vaccinees) or
 • Surrogates like viral load or viral shedding in biological samples (e.g. NP swabs, stools)
 • Indirectly through efficacy against infection prevention (a vaccine that completely prevents infection acquisition will also block transmission)

• Little to no public information on plans for special studies to assess transmission prevention among the ongoing COVID-19 vaccine development programs

• Following developers are assessing viral load in efficacy trial of COVID-19 vaccines
 • **AZ/Oxford (UK & US trials), Moderna & Janssen**: Serial viral load in NP swabs via RT-PCR among infected participants

• Viral shedding is being assessed in efficacy trials of AZ/Oxford vaccine candidate in
 • **Stool samples** in UK trial
 • Self or site collected **saliva samples** in US trial
To summarise....

• Ongoing efficacy trials of COVID-19 vaccine candidates have included asymptomatic infection prevention as secondary or exploratory endpoint

• Major approaches to identify asymptomatic infection include:
 • **Serological** - Seroconversion to non-vaccine antigen (e.g. N-protein)
 • **Virological** – Periodic RT-PCR (or other NAAT) samples from asymptomatic participants
 • **Combination** of serological and virological detection

• Very limited data on VE against infection currently available and it is inconclusive at present. More evidence likely to be available in coming months

• Limited evidence on VE against transmission prevention may also become available through surrogates like viral load and shedding from a few ongoing programs
Experience from using weekly PCRs to detect asymptomatic infections

Andrew Pollard, MBBS, PhD
Professor of Paediatric Infection and Immunity
University of Oxford

Merryn Voysey, DPhil
Lead Statistician
University of Oxford
Experience using weekly PCRs to detect asymptomatic infections

Dr Merryn Voysey,
Lead Statistician, Oxford Vaccine Group, University of Oxford
Asymptomatic infection

• An estimated 40% of SARS-CoV-2 infections are asymptomatic
• A vaccine with efficacy against asymptomatic infection has the potential to greatly reduce transmission and end the pandemic sooner
• Vaccine efficacy may be lower against asymptomatic infection than for symptomatic COVID-19 for some/all vaccines
Asymptomatic infection

1. Seroconversion to SARS-CoV-2 N protein
 • Under-detection
 • Short lived N protein antibody responses
 • Assay sensitivity
 • Depends which visits you use for the assessment
 • Timing of infection unknown

2. PCR+ asymptomatic infection
 • No trigger for taking a swab therefore constant swabbing required
 • Logistical nightmare
 • $$$
COV002 study

• Single blind randomised trial of ChAdOx1 nCoV-19 vs MenACWY vaccine (N~10,000) (Voysey et al, Lancet 2020)

• Asymptomatic PCR+ infection secondary endpoint

• UK national system for self-collected nose/throat swab done at home using a kit

• Centralised laboratory for processing

Get a free NHS test to check if you have coronavirus

You can have a swab test to check if you have coronavirus (COVID-19) now.

Who can get a free test

You can only get a free NHS test if at least one of the following applies:
• you have a high temperature
• you have a new, continuous cough
• you’ve lost your sense of smell or taste or it’s changed
• you’ve been asked to get a test by a local council
• you’re taking part in a government pilot project
• you’ve been asked to get a test to confirm a positive result

You can also get a test for someone you live with if they have symptoms.
COV002 asymptomatic testing

• Tapping into an already existing NHS system
• NHS swab kits packaged centrally with a unique barcode identifier to separate study swabs from others
• On a weekly basis, participants required to
 • Take swab as per instructions
 • Register the swab online
 • Post to central laboratory using designated post-boxes
• Participants informed of their results directly, via text message, by the NHS, including information on self-isolation
COV002 asymptomatic testing

- Daily data extract from the NHS of all swab results with our barcode (barcodes starting with ‘VAC’)
- Downloaded data matched to participants in the study
- Positive swabs uploaded into study database
Symptomatic or asymptomatic

• Participants not contacted by study team when positive on a weekly self-swab. Participants received information directly from NHS

 • Asymptomatic cases
 • Cases with unknown symptoms
Vaccine efficacy - UK

<table>
<thead>
<tr>
<th>Cases > 14 days post booster dose</th>
<th>N cases</th>
<th>ChAdOx1 nCoV-19 n/N (%)</th>
<th>Control n/N (%)</th>
<th>VE (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asymptomatic/unknown symptoms</td>
<td>69</td>
<td>29/3288 (0.9%)</td>
<td>40/3350 (1.2%)</td>
<td>27% (-17%, 55%)</td>
</tr>
<tr>
<td>LD/SD</td>
<td>24</td>
<td>7/1120 (0.6%)</td>
<td>17/1127 (1.5%)</td>
<td>59% (1.0%, 83%)</td>
</tr>
<tr>
<td>SD/SD</td>
<td>45</td>
<td>22/2168 (1.0%)</td>
<td>23/2223 (1.0%)</td>
<td>4% (-72%, 46%)</td>
</tr>
<tr>
<td>Primary symptomatic COVID-19</td>
<td>86</td>
<td>18/3744 (0.5%)</td>
<td>68/3804 (1.8%)</td>
<td>73.5% (56%, 84%)</td>
</tr>
<tr>
<td>LD/SD recipients</td>
<td>33</td>
<td>3/1367 (0.2%)</td>
<td>30/1374 (2.2%)</td>
<td>90% (67%, 97%)</td>
</tr>
<tr>
<td>SD/SD recipients</td>
<td>53</td>
<td>15/2377 (0.6%)</td>
<td>38/2430 (1.6%)</td>
<td>60% (28%, 78%)</td>
</tr>
</tbody>
</table>
Limitations

- PCR testing for SARS-CoV-2 has improved over time
- Effect of false positives may be important when there is low disease incidence
Next steps

• Correlation with seroconversion to N protein
• Detection/removal of false positives by N protein antibody response post PCR+
• Analysis of shedding time
• Analysis of Ct values
Part 3:

Additional approaches, evidence / post-licensure studies

Moderated By:
Daniel Feikin, MD, MSPH
Department of Immunizations, Vaccines, and Biologicals
(World Health Organization, WHO)
Modelling: impact of vaccine efficacy against disease versus transmission on public health and pandemic curves

Neil Ferguson, PhD
Director, MRC Centre for Global Infectious Disease Analysis
Imperial College, London
Modelling the impact of SARS-CoV-2 vaccines: role of direct vs indirect protection

Neil Ferguson

MRC Centre for Global Infectious Disease Analysis
WHO Collaborating Centre for Infectious Disease modelling

Report 33: Modelling the allocation and impact of a COVID-19 vaccine
Joint work involving:
Alexandra Hogan
Anne Cori
Oliver J Watson
Patrick G T Walker
Charles Whittaker
Marc Baguelin
Alessandra Løchen
Katy A M Gaythorpe
Giovanni Charles
Farzana Muhib
Katharina Hauck
Neil M Ferguson
Azra C Ghani

Imperial College COVID-19 Response Team
Indirect protection

- Protection of unvaccinated people in a population afforded by vaccination of the rest
- Extent depends on vaccine coverage and efficacy against transmission
SARS-CoV-2 Transmission Model

- Age-structured SEIR models (17 five-year age groups) with expanded healthcare component
- Two versions (UK and global) – SIRCOVID and SQUIRE
- Both open source as R package

Inputs:
- Epidemiological parameters determining spread and severity
- Demography
- Population contact patterns
- Healthcare capacity
Model features

Patterns of mixing between age-groups: vary by income setting.

Age-dependent patterns of disease severity.

Setting-specific healthcare capacity – for both general hospital and ICU beds.

Expert clinical consensus opinion on impact of treatment in different settings.

Healthcare capacity-dependent mortality from COVID-19.

Adding vaccination

Can capture and explore:
- Vaccine mode of action:
 - anti infection
 - anti disease
- Vaccine efficacy
- Age-varying efficacy (immunosenescence)
- Vaccine age-targeting and prioritisation strategies
- Vaccine coverage
- Duration of vaccine-derived immunity
- Duration of naturally-acquired immunity
Global scenarios

Varied R_t such that

- Initial epidemic wave in March 2020, followed by reduced social contact
- ~10% in Recovered class at end of 2020
- Partial lifting of suppression measures from 2021 when vaccine introduced
Vaccine impact

- If NPIs are lifted at vaccine introduction and that vaccination takes place over a longer time period (one year), vaccine impact will be lower.
- A greater public health impact will be obtained by targeting the older ages first rather than the working age population because the overall vaccine coverage during the period in which the epidemic occurs is low.
UK modelling

- Consider protection against disease or against infection
- Assume NPIs are lifted completely at some time point
- Age prioritisation in roll-out
- 4M Pfizer doses in December 2020 (90% efficacy)
- Jan-Mar 2021 – enough doses to vaccinate everyone >50
- 20% Pfizer, 80% AstraZeneca

- Pessimistic scenario:
 - pessimistic vaccine efficacy (AstraZeneca efficacy 65%)
 - pessimistic vaccine uptake (50% uptake in the under 50s)
 - pessimistic post-lockdown transmissibility ($R_{\text{excl_immunity}} = 1.4$)

- Reasonable best case, RBC:
 - optimistic vaccine efficacy (AstraZeneca efficacy 90%)
 - optimistic vaccine uptake (75% uptake in the under 50s)
 - optimistic post-lockdown transmissibility ($R_{\text{excl_immunity}} = 1.2$)

- “Central” scenario: [only considered for the full lifting of NPIs scenario]
 - optimistic vaccine efficacy (AstraZeneca efficacy 90%)
 - pessimistic vaccine uptake (50% uptake in the under 50s)
 - pessimistic post-lockdown transmissibility ($R_{\text{excl_immunity}} = 1.4$)
UK modelling: schedule

A1) Vaccinations per day

A2) Total vaccinated

A3) Proportion vaccinated

A4) Proportion effectively protected

B1) Vaccinations per day

B2) Total vaccinated

B3) Proportion vaccinated

B4) Proportion effectively protected
Partial lifting (R=1.4)

NPI end date:

- 2021-01-01
- 2021-02-01
- 2021-03-01
- 2021-04-01
Vaccine allocation: within-country

- With limited dose supply (<20% coverage) all income groups target direct protection of the highest risk groups (elderly) first.
- At higher coverage a strategy targeting herd-impact is chosen – this provides indirect protection to the high risk groups by suppressing transmission.
- Switching point between two strategies is dependent on demography and contact patterns, as well as NPIs, vaccine characteristics and rollout timescales.
• Switching point between two strategies is dependent on demography and contact patterns, as well as NPIs and vaccine characteristics
Vaccine allocation: global optimised

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Total deaths averted per million global population</th>
<th>Total deaths averted per 100 fully vaccinated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimised</td>
<td>1609</td>
<td>1.373</td>
</tr>
<tr>
<td>Countries are allocated doses relative to population size, with individuals 65 years and older targeted first</td>
<td>1257</td>
<td>1.131</td>
</tr>
<tr>
<td>Countries are allocated doses relative to size of population 65 years and older, with that age group targeted first</td>
<td>1317</td>
<td>1.178</td>
</tr>
</tbody>
</table>

Next best solutions:

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Total deaths averted per million global population</th>
<th>Total deaths averted per 100 fully vaccinated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Countries are allocated doses relative to population size, with individuals 65 years and older targeted first</td>
<td>1257</td>
<td>1.131</td>
</tr>
<tr>
<td>Countries are allocated doses relative to size of population 65 years and older, with that age group targeted first</td>
<td>1317</td>
<td>1.178</td>
</tr>
</tbody>
</table>

Within this global optimal allocation we see both strategies seen in the within-country allocation:

1. The most common = **direct protection** of the high risk groups (elderly)
2. Less common = **indirect protection** of high risk groups by herd impact
Summary

• Indirect protection likely to be key to returning to “normal”

• Even with 75-80% coverage with a vaccine which gives 90% efficacy against disease, ongoing transmission can cause very high mortality in the remaining 20% in the absence of efficacy against transmission or NPIs

• Even if vaccines offer high (eg 90%) efficacy against infection/transmission, high coverage in the general population will be necessary to stop transmission, given $R_0=3+$

• Even in high income countries, significant NPIs will therefore need to remain in force for at least Q1-2 20201

• There are some circumstances (if efficacy against infection/transmission is high) where targeting vaccination at key transmitters (young adults) can in theory be optimal

• However, vaccinating the oldest first is optimal when available stocks are low, or doses are delivered over the course of months-years

• Global allocation by country size is not far from optimal (by population over 65 a little more so)
Ongoing work

• Updating parameter ranges as trial information becomes available

• More detailed UK modelling exploring rate at which social distancing measures may be able to be relaxed

• Additional analyses, building on country-specific model fitting to numbers of deaths (European Centre for Disease Control) and Google mobility data (https://mrc-ide.github.io/global-lmic-reports/)
 ➢ Static country reports
 ➢ Interactive web tool

• Ongoing work estimating the combined epi-econ impact of Covid19, NPIs and role of vaccination

• Still gaining understanding of protective immunity following COVID-19 disease

• Likely that multiple, different vaccines will be implemented globally and within countries
Observational studies: what can we learn from other vaccines?

Natasha Crowcroft, MD
Senior Technical Adviser
World Health Organization (WHO)
Observational studies: what can we learn from other vaccines?

https://measlesrubellainitiative.org/measles-news/more-children-in-middle-income-countries-missing-out-on-vaccines/
Outline

- Background on pertussis and measles
- Examples from studies of pertussis vaccine effectiveness against transmission and measles vaccine failure
- Conclusions
Pertussis

Inactivated/subunit vaccine: high initial effectiveness, protection wanes
Vaccine modified disease transmits; infectivity is related to severity of symptoms
High coverage leads to moderate herd effects
No agreed correlate of protection

Measles

Live measles vaccine: highly effective and long duration of protection
Vaccine modified disease very rarely transmits, does not contribute to epidemiology
High coverage leads to strong herd effects
Agreed correlate of protection

*Bolotin et al, JID 2020 [https://academic.oup.com/jid/article/221/10/1576/5610904]
Epidemiology shows indirect effects due to reduced transmission: Good surveillance is essential

Pertussis epidemic cycles indicate ongoing transmission despite immunization

Measles vaccination alters age distribution, interrupts transmission
Household studies of pertussis infectivity build on routine reporting, requires agile research team

Households with a case of pertussis in Brazil. Interview and nasopharyngeal swab from every family member with h/o cough in past 21 days. Cases confirmed by culture or clinical case definition.

Estimated whole cell pertussis VE against transmissibility by comparing the secondary attack rate when the primary case was fully vaccinated with the secondary attack rate when the primary case was > 5 years old, unvaccinated or partially vaccinated.

VE to reduce case bacteriologic positivity
63.1% (40.7 to 77.0)

VE of reducing transmission to contacts
61.6% (12.8 to 83.1)

Baptista et al Ped Infect Dis J 2006
Prospective longitudinal cohort studies require community-based platform to study transmission

Active population surveillance in a sub-Saharan rural community of 30 villages

Multiple case definitions based on clinical, laboratory and epidemiological criteria

Key case definition ≥21 days cough with paroxysms and positive culture, serology or epi-link

Secondary case definitions – with or without 28 day cut-off

Using key case definition for secondary cases within 28 days

\[\text{VE} = 85\% \ (46-95) \]

Any secondary case

\[\text{VE} = 67\% \ (20-85) \]

Préziosi and Halloran Vaccine 2003
High vaccine effectiveness: Study vaccine failures and breakthrough measles infections

Outbreak investigations important for understanding the role of vaccine failures

Specialist expertise is needed to understand how vaccines fail – microbiology and immunology

All-or-none vaccines (Primary vaccine failure): age-appropriate severity

Waning (Secondary vaccine failure): protection declines exponentially

Vaccine modified disease: Milder illness in vaccinated

Leaky vaccines: Each exposure carries an equal risk of infection for everyone, no change in severity, may look like waning after multiple exposures

Exposure threshold: VE in high infectious dose lower than low infectious dose

Breakthrough infection: a confirmed case in an individual with history of vaccination and/or positive IgG levels

Failure to prevent transmission of infection: multiple potential models
Immunology of pertussis transmission

Cell-mediated immunity is critical for protective immunity

Impact of acellular (aP) versus whole cell (wP) pertussis vaccine on transmission in the baboon model:

Both Th1 and Th17 memory responses are needed to produce sterilizing mucosal immunity against pertussis

Canadian Immunization Research Network study protocol available for human household pertussis study with detailed immunology follow up

Lessons from experience of pertussis and measles

Mass immunization programmes leave epidemiological signatures in surveillance data of impact of vaccines on interrupting transmission. Modelling is an essential tool for interpreting the signature.

Household studies, longitudinal prospective community based cohort studies and outbreak investigations have yielded important insights on impact of vaccines on transmission. Case definitions, secondary case definitions, ascertainment and laboratory diagnostic methods are important considerations.

Surveillance, microbiological and immunological data are essential for understanding why and how vaccines succeed or fail to prevent transmission. Appropriate specimen collection is needed to understand the model of failure.
Thank you

https://measlesrubellainitiative.org/photo-gallery/sophie-blackall-works/
Statistical approaches to studying transmission

Ira Longini, PhD
Professor of Biostatistics
University of Florida / WHO
Statistical approaches to studying transmission

Design and analysis of studies to measure the impact of vaccination on transmission on both the individual and population level

Ira Longini
Professor
Department of Biostatistics
Emerging Pathogens Institute
University of Florida

Consultant to WHO
Measures of vaccine effectiveness against transmission

• Based on the ratio definition of VE,
 • λ_V transmission rate involving vaccinated
 • λ_U transmission rate involving unvaccinated
 • $VE = 1 - \frac{\lambda_V}{\lambda_U}$

• Transmission in clusters
 • Individual level
 • Smaller clusters such as households, compounds, contact rings or tracing of contacts
 • Population level
 • Larger clusters such as villages, towns, regions of cities
Individual level study design of vaccine effectiveness against transmission

Distribute vaccine or comparator (or nothing) within cluster

Vaccinated and unvaccinated people are exposed to each other
Individual level estimator of vaccine effectiveness against transmission

- Vaccine efficacy for transmission to others, VE_I
- Secondary attack rate from a vaccinated person to others
 - SAR_V
- Secondary attack rate from an unvaccinated person to others
 - SAR_U
- $VE_I = 1 - \frac{SAR_V}{SAR_U}$
- Other measures: $VE_S = 1 - \frac{SAR_V}{SAR_U}$, $VE_T = 1 - \frac{SAR_V}{SAR_U}$
- Statistics are based on risk ratios, multivariate analogs
Children vaccinated with three doses of a whole-cell or an acellular pertussis vaccine in compounds. VE_S, VE_I, and VE_T estimated.

Bootstrap estimates

The vaccine reduce the probability of transmission from vaccinated children to other children by 85% in the compound.
Population level study design of vaccine effectiveness against transmission

Distribute vaccine and comparator (or nothing) within clusters and across clusters with different levels of coverage

Vaccinated and unvaccinated people are exposed to each other within clusters
Vaccine Effectiveness

Intervention Population: 1
- Vac f
 - λ_{1v}
- Nonvac 1-f
 - λ_{1u}

Overall

Control Population: 2
- Nonvac
 - λ_{2u}

Direct

Indirect

Total

Vaccine Effectiveness

Intervention Population: 1

Vac f
\[\lambda_{1v} \]

Nonvac 1-f
\[\lambda_{1u} \]

Direct
\[\text{VE}_{\text{direct}} = 1 - (\lambda_{1v} / \lambda_{1u}) \]

Control Population: 2

Overall
\[\text{VE}_{\text{overall}} = 1 - (\lambda_{1\text{ave}} / \lambda_{2u}) \]

Indirect
\[\text{VE}_{\text{indirect}} = 1 - (\lambda_{1u} / \lambda_{2u}) \]

Total
\[\text{VE}_{\text{total}} = 1 - (\lambda_{1v} / \lambda_{2u}) \]

Statistical methods

• Vaccine effectiveness measures are estimated via the rate ratios: \(VE = 1 - \frac{\lambda_V}{\lambda_U} = VE = 1 - RR. \)

• The RR is computed through event-history modeling, e.g., survival models, agent-based models

• We are interested in the indirect, overall and total vaccine effectiveness that all functions of reductions in transmission due to vaccination and herd immunity effects
Reanalysis of oral cholera vaccine trial in Matlab, Bangladesh as a double randomized cluster randomized trial. Clustering unit was the bari (patrilineal collection of dwellings in a compound)

$\text{VE}_S = 58\%; \ p<0.01$
Estimated effectiveness measures: Oral cholera vaccines

Conclusion

• Studies can be randomized or observational
• Individual level studies in transmission groups provide estimates of the VE_I
 • Households or other small mixing groups
 • Contact studies
• Larger-scale population level studies prove estimates of the vaccine impact on transmission
 • Cluster randomize studies, including stepped wedge
 • Clustered observational studies
Thank you
Household transmission studies

Adam Finn, PhD
Professor of Paediatrics
University of Bristol
Can we measure vaccine impact on transmission by studying family transmission?

Adam Finn
@adamhfinn

17th Dec 2020
Pre-/Post-Licensure Assessments Workshop

Thx to Peter Dull, David Vaughn, Danny Feikin, Jamie Lopez Bernal, Gina Murphy, Ping Li, Igor Smolenov
Ways to study impact on transmission include:

• Cluster randomised trials
• Staggered implementation studies either in time or location or both
• Studying onward transmission to close contacts of vaccine failures vs unvaccinated controls eg families or households
1. Surveillance

• Need to ascertain not only symptomatic PCR+ blinded study subjects but also

• Asymptomatic infections in real time
 - Self sampling and PCR analysis (costly, slow, sensitive - probably)
 - Self administered rapid tests (cheap, quick, less sensitive but maybe fairly good predictor of infectiousness
2. Enrollment

- Need to contact families/household immediately (what is a household?)
- ??Exclude families with previous/past history of COVID
- Obtain informed consent from all/adequate number of members
- Deliver materials and train them to obtain samples while obtaining initial set
3. Samples

- Saliva – preferred. Non invasive and well tolerated. Self sampling done easily and well for good volumes. Good for PCR and AB detection. But maybe less sensitive than swab for PCR
- ?Swab – [NP], anterior N, throat, both
- ?Blood – venous, capillary, suction device?
4. Sampling

- Frequency - twice weekly
- Duration - three weeks
Secondary cases

• Antibody negative on first (and second) sample (do you exclude whole family or just individual?)
• If PCR+(s) virus already circulating
• Become PCR positive during sampling period or seroconvert
• NB can deduce timing/chronology of infections to an extent - but NOT who infected who reliably - secondary cases may really be "tertiary" cases or infected from outside
Readout

• Proportion of susceptible family/household contacts of the index cases who become cases during the observation period comparing vaccine failures' contacts with those of unvaccinated controls

• Likely to be - if anything - under estimated
Power

• How many infections in vaccinated group and in control group?
• How many susceptible contacts?
• Transmission rate from controls?
• Size of reduction in this rate from vaccinees you want to be able to detect
So, can it be done?

<table>
<thead>
<tr>
<th></th>
<th>Vaccine</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of any COVID cases</td>
<td>31</td>
<td>69</td>
</tr>
<tr>
<td>(assuming true VE of ~65%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of asymptomatic cases,</td>
<td>69</td>
<td>138</td>
</tr>
<tr>
<td>assuming 1/2 symptomatic and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>asymptomatic cases, and a 50%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>efficacy against asymptomatic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>infection Sensitivity: 1:1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number of SARS-CoV-2</td>
<td>100</td>
<td>207</td>
</tr>
<tr>
<td>cases in the study</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% of study population included</td>
<td>50</td>
<td>103</td>
</tr>
<tr>
<td>in the HHS (50%) Sensitivity: 20%-30% and 40%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average size of household (4)</td>
<td>50x4=200</td>
<td>103x4=412</td>
</tr>
<tr>
<td>Sensitivity: 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion of families with</td>
<td>100</td>
<td>206</td>
</tr>
<tr>
<td>study subject as the index case</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(50%) Sensitivity: 30%, 40%, 60%, 70%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transmission rate</td>
<td>20-30-40%</td>
<td>50%</td>
</tr>
<tr>
<td>Number of secondary cases</td>
<td>20-30-40</td>
<td>103</td>
</tr>
<tr>
<td>Transmission difference that can</td>
<td></td>
<td></td>
</tr>
<tr>
<td>we detected with 80% power?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Thanks to: Ping Li, Igor Smolenov
If 50% to 20%: 80% power

Power vs Transmission Rate Difference (Pv - Pp)
Success Criteria: there is difference in Transmission rates between vaccine and placebo group (UL of 95%CI for Transmission Rate Difference < 0)

Observed Transmission Rate Difference (assume the transmission rate=50% in placebo group): Vaccine minus Placebo

Secondary Case: in Vaccine and Placebo 20 vs 103
Phase 2b trial design to assess vaccine efficacy against infection, viral load, and secondary transmission

Holly Janes, PhD
Professor of Biostatistics
Fred Hutchinson Cancer Research Center
Evaluating COVID-19 Vaccine Efficacy on Infectivity to Infer Population Vaccine Effects

Holly Janes
Fred Hutchinson Cancer Research Center (FHCRC)

In close collaboration with Elizabeth Brown (FHCRC)
Audrey Pettifor (UNC Chapel Hill) and Katy Stephenson (Harvard U)
Proposed Phase 2b Trial to Evaluate Vaccine Effects on Infectivity

<table>
<thead>
<tr>
<th>Arm</th>
<th>Sample Size</th>
<th>Day 1</th>
<th>Day 29</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaccine 1*</td>
<td>7,000</td>
<td>Dose 1</td>
<td>Dose 2</td>
</tr>
<tr>
<td>Vaccine 2*</td>
<td>7,000</td>
<td>Dose 1</td>
<td>Dose 2</td>
</tr>
<tr>
<td>Placebo</td>
<td>7,000</td>
<td>Placebo</td>
<td>Placebo</td>
</tr>
</tbody>
</table>

21,000 **University students** randomized 1:1:1, stratified by residence
- Vaccine coverage (University-wide and residence-specific) and baseline SARS-CoV-2 seropositivity controlled operationally

Main Study Cohort

Close Contact Cohort

<table>
<thead>
<tr>
<th>Contact of SARS-CoV-2 Infected Ppt in Main Study Arm</th>
<th>Sample Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaccine 1*</td>
<td>~150⁺</td>
</tr>
<tr>
<td>Vaccine 2*</td>
<td>~150⁺</td>
</tr>
<tr>
<td>Placebo</td>
<td>~300⁺</td>
</tr>
</tbody>
</table>

Close contacts of study participants diagnosed with SARS-CoV-2 infection
- under 50% VE and with 3.5% incidence.
Actual number of contacts is random -- depends on incidence, vaccine efficacy, and contact network

* prioritizing mRNA and adjuvanted protein vaccines given evidence of protection in NHP studies
Sampling Schedule for Main Study Participants

- 4 months self-collection of daily swabs for PCR diagnosis of SARS-CoV-2 infection
- For SARS-CoV-2 infected participants, daily signs/symptoms through resolution
Sampling Schedule for Close Contacts of Study Participants with Positive SARS-CoV-2 PCR

- 14 days self-collection of nasal swabs for PCR diagnosis of infection
- Day 0 and 28 serology to capture past infection and missed incident infections
Primary Objectives and Endpoints

• To evaluate **efficacy against SARS-CoV-2 infection**, each vaccine vs. placebo
 - SARS-CoV-2 PCR positivity based on nasal swab*

• To evaluate **magnitude and duration of viral shedding** among participants with incident SARS-CoV-2 infection, each vaccine vs. placebo
 - Peak log10 viral load and other shedding summaries, based on nasal swab*

• To evaluate differences in **safety parameters** between vaccine and placebo recipients
 - Reactogenicity and AEs

* 14+ days post-dose 2, among per-protocol participants baseline seronegative for SARS-CoV-2
Key Secondary Objectives

- Vaccine efficacy against secondary transmission
- Vaccine effects on viral load and secondary transmission, separately for symptomatic vs. asymptomatic SARS-CoV-2 infections
- Vaccine efficacy against seroconversion
- Vaccine efficacy against COVID-19
- Immune correlates of COVID-19 disease, viral load kinetics and transmission risk
- Comparative efficacy of vaccine regimens
Sample Size Rationale

- $N = 7,000$ per arm ensures high prob. 150 primary endpoint infections accrue for each (vaccine, placebo) pair within 20 weeks under 3.5% placebo SARS-CoV-2 incidence.

- 150 primary endpoint infections (50 in vaccine group) ensures 90% power to evaluate all primary and key secondary objectives:
 - Detect 50% VE against infection (rejecting $H_0: VE \leq 0\%$)
 - Detect 1-log10 reduction in mean peak viral load among infections
 - Detect 39-49% reduction in mean number of secondary transmission events under 25% VE against infection
 - Compare VE against infection between arms, e.g. 60% vs. 83% VE against infection
 - Evaluate immune correlates of infection and viral load, esp. combining vaccine arms

$¥$ With 80% probability, assuming 6-week accrual, 10% baseline seropositive, VE = 50%, 5% LTFU, 98% per-protocol. Primary endpoint events are 14-days post-second vaccination in the per-protocol set. 1-sided 0.025-level log-rank test.
Methods for Evaluating Vaccine Efficacy

• VE against SARS-CoV-2 infection
 o Cox proportional hazards regression
 o Supported by network simulations that establish operating characteristics in the context of minimal 'interference'

• Vaccine effect on viral load
 o Compare mean viral load conditional on SARS-CoV-2 infection, and unconditional (uninfected get a '0')
 o Various measures of viral load: peak, AUC, time to VL > 10^5 copies/mL

• Vaccine efficacy against secondary transmission
 o Compare mean no. 'potential transmission events' (uninfected get a '0') using proportional means model
 o Inferred from questionnaires, dx timing, viral load, serology, viral sequences and determined by expert adjudication committee

Secondary analyses will leverage causal inference methods to formally accommodate interference
Linking transmissions

Type of contact
Timing of contact
Length of contact
Mask wearing

Adjudication committee

Potential transmission?
Why study infectiousness in phase 2b study, instead of deferring for phase 4?

• Policymakers and public need answers now to inform policy and individual actions:
 o Who to vaccinate given vaccine scarcity
 o When/where to mandate vaccination
 o Whether vaccine recipients must still mask and isolate if infected
• Short window of opportunity for gold standard trial, before licensure and wide vaccine availability
• Most rigorous assessment of whether vaccines reduce infectiousness (vs. observational and cluster-randomized stepped-wedge studies)
• Aids bridging to new populations: vaccine effect on viral load bridges more readily than VE against secondary transmission which is context-specific
• Provides data to validate viral load as surrogate of infectiousness
• Potentially identifies immune correlates of SARS-CoV-2 infection and shedding which may differ from disease, aiding licensure of future vaccines with effects on these endpoints
• Defines sensitivity of serology to detect all SARS-CoV-2 infections captured via daily PCR testing
Panel Discussion

Moderated By:
Daniel Feikin, MD, MSPH
Department of Immunizations, Vaccines, and Biologicals
World Health Organization (WHO)
Discussion Panel Members and Example Questions

Panel Members

- **Gagandeep Kang**
 Christian Medical College, Vellore, India

- **Ole Wichman**
 Robert Koch Institute, Germany

- **Peter Smith**
 London School of Hygiene & Tropical Medicine

+ **Presenters from Parts 2 & 3**

Potential Discussion Questions

1. Might we expect vaccines to exhibit more protection against infection and transmission than naturally acquired COVID-19 infection?
 - Which types of vaccines might better protect against infection and transmission?

2. How might evidence of VE against prevention of infection and/or transmission affect vaccine policy recommendations?
 - Might this evidence affect policy recommendations differently in different geographic settings (e.g., based on differing epidemiology and burden of COVID-19 morbidity and mortality.)

3. How related are VE against infection and transmission?
Wrap Up & Next Steps

Jakob Cramer
Head of Clinical Development
Coalition for Epidemic Preparedness Innovations (CEPI)
Closing remarks

- Thank you all for your participation and engagement today

- Workshop report distributed shortly to summarize today’s conversation

- We will continue to share resources at the website here: https://epi.tghn.org/covax-overview/clinical/

- Workshops will continue in 2021 – please provide ideas and suggestions (see website above)
 - F/U on CoP
 - Vaccine Safety / pharmacovigilance
 - Follow up from previous workshops and more 'hot topics'

- The COVAX Clinical SWAT Team plans to continue sharing learnings across developers as we pursue our common goal – a global supply of safe and effective vaccines

- SEASONAL GREETINGS!
Clinical Development & Operations SWAT Team