

Overview of Mycobacterium Growth Indicator Tubes (MGIT) including Drug Susceptibility Testing (DST)

Priya Solanki & Linzy Elton

- 1. Principles
- 2. Reagents
- 3. Inoculation
- 4. Unloading MGIT tubes

- 5. Processing MGIT tubes
- 6. Reporting results

1. Principles

• Fluorescent compound present in the silicone at the bottom of MGIT

- Fluorescent compound is sensitive to the presence of oxygen
- Initially there is large amounts of dissolved oxygen
- The dissolved oxygen decreases as the *Mycobacterium spp* grow
- This results in increased fluorescence
- MGIT incubation is at 35-37°C
- Each MGIT is monitored every 60 minutes for increasing fluorescence

Increased Fluorescence

1. Principles

A positive MGIT contains 10⁵ to 10⁶ colony forming units per milliliter (CFU/mL)

 A negative MGIT has no fluorescence/visible signs of bacterial growth at 42 days

MGIT tubes contain:

✓ 110 µL fluorescent indicator ✓ 7 mL modified Middlebrook 7H9 broth

2. Reagents

 Growth supplement (OADC) is added to tubes to enable the rapid growth of mycobacteria

Middlebrook OADC supplement – values per L Purified Water				
Oleic Acid	0.1 g	Involved in metabolism of mycobacteria		
Albumin	50.0 g	Protective agent by binding free fatty acids which may be toxic to Mycobacterium species		
Dextrose	20.0 g	Energy Source		
Catalase	0.03 g	Destroys toxic peroxides that may be present in media		
Polyoxyethylene stearate (POES)	1.1 g	Emulsifying agent. Encourages Mycobacterium growth		

PANTA: per vial of lyophilised PANTA – per L purified water				
Polymyxin B	6,000 units			
Amphotericin B	600 μg			
Nalidixic acid	2,400 μg			
Trimethoprim	600 μg			
Azlocilin	600 μg			

3. Inoculation

- 1. Reconstitute PANTA powder with growth supplement (15mL)
- 2. Label the MGIT with specimen number & date
- 3. Add 800 µL of growth supplement/PANTA to MGIT tube
- 4. Add 500 µL of concentrated specimen suspension as prepared
- 5. Tightly recap the tube and invert gently
- 6. Scan in the tube (BD BACTEC MGIT machine) tubes automatically tested for the recommended 42 day testing protocol

All sub-culturing must take place using **bio-safety level III** practices and containment facilities

Exact practices may vary between sites due to individual requirements. This will be highlighted with a star (*)

4. Unloading MGIT tubes

UC

- After pressing the unload positive button
- Any positive MGIT will show a flashing light in the position it has been place in the machine
- The tube will need to be scanned out
- A positive report can be printed and annotated as required

• Negative MGIT tubes are unloaded similarly, after pressing the unload negative button

4. Unloading MGIT tubes

L C

4. Unloading MGIT tubes

BACTEC MGIT 960 Unloaded Positives Report

Must be \geq 4 days

- 1. Scan out a tube
- 2. Positive tubes for *Mycobacterium tuberculosis* should flag on or after 4 days

- 3. Positive tubes should be sub-cultured onto solid-LJ/liquid media-MGIT as required*
- 4. An acid-fast smear should be prepared
- 5. Using a sterile pipette remove approximately 100 μ L from the bottom of the tube for stain preparations
- 6. Report preliminary results only after acid-fast smear evaluation

5. Processing tubes: Negative

- 1. Scan out a tube
- 2. Negative tubes should be inspected after the 42 day period for positivity

3. If any signs of positivity, it should be subcultured and treated as a presumptive positive, provided the acid-fast smear result is positive

4. If there is no sign of positivity, the tube should be removed from the MGIT instrument and sterilised before discarding

- Results should be reported as per the requirements of the individual institute*
- This may vary between sites*

Drug Susceptibility Testing

- 1. Overview
- 2. MDR / XDR TB
- 3. Principle
- 4. Preparation of drugs
- 5. Preparation of MGIT
- 6. Using inoculum from a positive MGIT
- 7. Growth control preparation
- 8. Inoculation of MGIT
- 9. Loading DST
- 10. Interpreting DST results
- 11. Confirming resistant isolates
- 12. Error messages
- 13. Quality Control

Detection of resistance in *Mycobacterium tuberculosis* is of great importance for:

Effective Patient Management

Infection Control

Drug Susceptibility Testing

- Drug susceptibility testing is a rapid qualitative procedure for susceptibility testing of *Mycobacterium tuberculosis*
- Treatment of TB is most commonly through a multiple drug regimen that includes: Streptomycin (STR), Isoniazid (INH), Rifampicin (RIF), Ethambutol (EMB) and Pyrazinamide (PZA)
- It is imperative the drugs prescribed for any particular patient show appropriate activity against *Mycobacterium tuberculosis*

 Resistance to the first line drugs Isoniazid and Rifampicin is increasing globally

- Resistance to these drugs defines multi drug resistant tuberculosis (MDR TB)
- MDR TB is linked to significant mortality and is a serious threat to the efficacy of TB control programs

Extensively drug resistant tuberculosis (XDR-TB) is defined as:

MDR-TB with resistance to second line fluoroquinolones (*e.g.* moxifloxacin)

- Plus resistance to one of the second line aminoglycosides (*e.g.* kanamycin)
- XDR-TB poses a greater challenge to treatment in patients

Drug Susceptibility Testing Principle

The BD BACTEC MGIT 960 DST principle is based on growth of the *Mycobacterium tuberculosis* isolate in a drug containing tube compared to a drug free tube (Growth Control-GC)

Growth Control

Drug containing tube

Drug Susceptibility Testing Principle Overview

- DST is performed using an AST (antibiotic susceptibility testing) set
- The set consists of a **drug-free growth control MGIT tube (GC)** and **one MGIT tube for each drug**, as well as a bar-coded tube carrier that holds the set
- A known concentration of drug is added to a MGIT tube, along with the specimen
- Growth of the specimen added to the drug containing tube is compared with the drug-free growth control which contains the same specimen
- The bacterial inoculum added to the drug-free growth control tube is one hundred-fold less than the inoculum added to the drug containing tubes

Bar coded tube carrier

First line drugs:

Drug	Stock concentration of drug*	Volume added to MGIT tubes for test	Final critical concentration in MGIT tubes	Supplier (Becton Dickinson - BD)
Streptomycin (STR)	83 µg/ml	100 µl	1.0 µg/ml	BD (SIRE kit)
Isonazid (INH)	8.3 µg/ml	100 µl	0.1 µg/ml	BD (SIRE kit)
Rifampicin (RIF)	83 µg/ml	100 µl	1.0 µg/ml	BD (SIRE kit)
Ethambutol (EMB)	415 µg/ml	100 µl	5.0 µg/ml	BD (SIRE kit)

* These drugs must be reconstituted using 4 mL of sterile/deionised water to achieve concentrations indicated in the table above.

Drug	Stock concentration	Volume added to	Final critical	Supplier (Becton Dickinson -
	of drug*	MGIT tubes for test	concentration in	BD)
			MGIT tubes	
Pyrazinamide	8000 µg/ml	100 µl	100 µg/ml	BD (PZA kit)

* PZA must be reconstituted using 2.5 mL of sterile/deionised water to achieve concentrations indicated in the table above.

Second line drugs:

Drug	Stock concentration of drug*	Volume added to MGIT tubes for test	Final critical concentration in MGIT tubes	Supplier (Becton Dickinson - BD)
Moxifloxacin (MOX)	20.75 µg/ml	100 µl	0.25 µg/ml	BD (Moxifloxacin HCl)
Kanamycin (KAN)	207.5 µg/ml	100 µl	2.5 μg/ml	BD (Kanamycin Sulphate)

* MOX must be reconstituted using 3 mL of sterile/deionised water and then diluted 1:8 with sterile/deionised water to achieve concentrations indicated in the table above.

* KAN must be reconstituted using 4 mL of sterile/deionised water to achieve concentrations indicated in the table above.

Pyrazinamide (PZA) Differences

UC

- The activity of PZA requires a lower pH of 6.0
- Green tubes provided by BD are used for PZA DST testing
- The growth control for PZA is also incubated in a green tube as the lower pH of 6.0 does not inhibit growth of *Mycobacteria tuberculosis*

Preparation of MGIT tubes for DST testing: CL2

- Label as many tubes as required for testing
- 2. Place tubes in correct sequence
- Aseptically add 800 µL of BACTEC MGIT Supplement (SIRE and/or PZA)
- Aseptically pipette 100 µL of drug

 $800 \ \mu L \ supplement$

100 µL drug

Using inoculum from positive MGIT: CL3

 Once a MGIT has flagged positive at or after 4 days, it must be used within 1-5 days

• If a MGIT is unloaded on day 0, the tube should be reincubated for a minimum of one day (day 1)

Using inoculum from positive MGIT: CL3

Positive MGIT containing sample

GC Drug

Growth Control Preparation: CL3

 SIRE/MOX/KAN drug susceptibility sets require the organism suspension to be diluted 1:100 for the growth control from which 500 µL is inoculated

 PZA drug susceptibility sets require the organism suspension to be diluted 1:10 for the growth control from which 500 µL is inoculated

Organism Suspension diluted 1:100 for GC 500 µL inoculated

Inoculation of tubes: CL3

- 500 µL of the organism suspension is inoculated into the drug tubes
- A blood agar plate is used to check for contamination (Incubated at 35-37°C and checked at 48 hr)

500 µL organism suspension inoculated

Loading DST into BD BACTEC MGIT machine

- SIRE/MOX/KAN have a time in protocol of 4-13 days
- PZA allows for a longer timeframe of 4-21 days

Susceptible result:

- Growth will be inhibited and fluorescence will be suppressed in the drug-containing tube
- The drug-free growth control will grow and show increasing fluorescence
- Sensitive result: Growth units are less than 100

Resistant result:

- Growth and its corresponding increase in fluorescence will be evident in both the drug-containing and the drug-free growth control tube
- Resistant result: Growth units are more than 100

Interpreting DST results

	BACTEC MGIT 960						
	Unloaded AST Set Report						
Instrument Number	Curr DateЛ	ent īme	Temperat A B	ture C	Software Version	Page	
1	21-06-19	9 13:28	36.6°C 36.9°	C 36.6°C	V5.02A	1	
Sequence No:	439550114904	TIP:	BCG 9;19 SOP: 10-06	-19 17:17 Re	moved Date: 21 -	06-19	
Tube Position	Growth Unit	Status	Concentration	Name			
B/L15 B/L16 B/L17 B/L18 B/L19	400 0 0 0 0	C S S S .	1.00 ug/mL 0.10 ug/mL 1.00 ug/mL 5.00 ug/mL	Growth Cor Streptomyc Isoniazid Rifampin Ethambutol	ntrol Sin		
Sequence No:	439220066197	TIP	BCC	10 17.10 D o	mound Date: 01	06.10	
Tube Position	Growth Unit	Status	Concentration	Drug Name		.00-19	
B/M01 B/M02	400 0	C C		Growth Cor Undefined	ntrol Drug #1 MÖ	X	
			END OF AST SETS				

Confirming Resistant Results

Sequence No:	439220065988	BCG-	7;23 SOP: 10-06-19	9 17:18	Removed Date: 19-06-19
Tube Position	Growth Unit	Status	Concentration	Drug Name	
B/M03 B/M04	400 400	C R	100.0 ug/mL	Growth Pyrazir	Control namide

- 1. Blood agar culture (BAC) prepared Check at 48 hr
- 2. Breadcrumb morphology check (no turbidity in MGIT)
- 3. Staining ZN or Kinyoun (if needed)

	BAC has no growth	
Resistant Result Accepted	Colony morphology is typical	
	BAC shows growth	
Resistant Result NOT Accepted	MGIT does not show typical morphology	
	Smear shows contamination	

Confirming Resistant Results

Kinyoun stain showing contamination

- If AST print out shows an X
- Run has failed GC reached 400 GU outside of acceptable timeframe
- The result is invalid and no interpretation (S/R) will be shown

Error Message X200

 System cannot detect sufficient growth in GC tube in specified protocol time:

- 1. Too little inoculum
- 2. Non-viable organisms
- 3. Slow growing drug-resistant strain

• On repeat sub-culture, use 3-5 days undiluted culture

- Detects indications of possible contaminated or over inoculated GC tube
- Perform BAC to check tube is pure
- On MGIT repeat sub-culture, use between 1-2 days

Perform DST testing on H37Rv (or equivalent fully sensitive isolate)

Each batch of reagents (drug kits and tubes) must be quality tested

• If the QC fails: all results for batch must be reviewed, new reagents purchased, and testing of samples repeated

Drug Susceptibility Testing

- 1. Overview
- 2. MDR / XDR TB
- 3. Principle
- 4. Preparation of drugs
- 5. Preparation of MGIT
- 6. Using inoculum from a positive MGIT
- 7. Growth control preparation
- 8. Inoculation of MGIT
- 9. Loading DST
- 10. Interpreting DST results
- 11. Confirming resistant isolates
- 12. Error messages
- 13. Quality Control