

The INHALE Project: What have we learnt about the molecular diagnostics of HAP/VAP?

Dr Vicky Enne University College London Twitter: @Beat_AMR_Bugs @HAP_Diagnostics Website: www.ucl.ac.uk/inhale-project

Sample arrives in lab

Microscopy/Gram Stain (a few min)

Culture (16h-48h)

Further testing / reference laboratory (up to 2 weeks)

Antimicrobial susceptibility

testing

(24-48h)

Identify growth: MALDI-TOF/Biochemical testing (a few min – 24h)

The Need for Rapid Diagnostics

What Factors Contribute to the Adoption of Molecular Diagnostics?

In the Clinical Laboratory

- Can it be integrated into the clinical pathway/laboratory workflow?
 - How much does it cost who pays?
 - Is it easy to use, how much training is required?
 - How much space is needed?
 - How long does it take?
- Is the machine reliable
 - How often does it break down?
 - Is the customer support adequate?

At the Bedside

- Are the results accurate
 - Does the test do "what it says on the tin"?
 - Does is look for the important pathogens/resistance genes?
- Do doctors trust the results & know what to do with them?
- Does using the test actually make a difference:
 - To levels of antibiotic use?
 - To patient outcomes?

INHALE Programme Outline

INZALE

WP4 – Behaviour Study

WP5 – Health Economic Analysis

WP6 – Management and Dissemination

Hospital-acquired Pneumonia (HAP)

- Defined as pneumonia that occurs
 >48h after hospital admission
 - VAP occurs in ventilated patients
- 1.5% of inpatients in UK
- Approx. 200k patients/year
- Mortality rate for HAP/VAP is approx. 25-50%
- Increases to 75% if MDR pathogen
- HAP/VAP adds approx. 8 days to ICU stay
 - costs an additional \$30,000 -\$37,000 per patient

Project Participants

- UCLH/UCL/UEA (Lead organisations)
- 15 Critical Care Units in England representing diverse casemix

INHALE WP1: Head to Head Comparison of 3 Rapid Molecular Tests for Pneumonia Diagnosis vs. Routine Microbiology Culture

The FilmArray Pouch

Biofire FilmArray Pneumonia Panel

Curetis Unyvero Pneumonia Test

Oxford Nanopore Technologies MinION metagenomic sequencing

Clinical Evaluation Sample Characteristics

 654 eligible samples collected from 15 hospitals

Oxford Nanopore MinION NGS Diagnostics

- Rapid, low-cost NGS sequencing based on nanopore technology
- Capability to obtain full organism & resistance gene profile – not limited to selected targets

 World first comprehensive trial of *rapid* metagenomics for the diagnosis of infection (336 specimens over 9 months)

INHALE Laboratory Custom Work Flow for MinION Processing: Total time to Result = approx. 7h

biotechnology

ARTICLES https://doi.org/10.1038/s41587-019-0156-5

Nanopore metagenomics enables rapid clinical diagnosis of bacterial lower respiratory infection

Themoula Charalampous ¹⁸, Gemma L. Kay ^{12,8}, Hollian Richardson¹⁸, Alp Aydin ², Rossella Baldan^{1,3}, Christopher Jeanes⁴, Duncan Rae⁴, Sara Grundy⁴, Daniel J. Turner⁵, John Wain^{1,2}, Richard M. Leggett ⁶, David M. Livermore^{1,7} and Justin O'Grady ^{12*}

Routine Microbiology finds Organisms Commonly Associated with HAP/VAP

Example Results: UCLH Sample 111 (ETT)

Method	Organism	Resistance Phenotype	Resistance genotype	
Routine microbiology	Escherichia coli	Penicillins, amoxy-clav, aztreonam, 2/3/4 gen cephalosporins, co- trimoxazole, trimethoprim	NA	
Unyvero	Escherichia coli (+++)	Penicillins, aztreonam, 2/3/4 gen cephalosporins, sulphonamides (predicted)	bla _{TEM-1} sul1 bla _{CTX-M} GyrA wt	
FilmArray	Escherichia coli (>10 ⁷)	Penicillins, aztreonam, 2/3/4 gen cephalosporins (predicted)	bla _{стх-м}	
MinION	<i>Escherichia coli</i> (90.5% of reads)	Penicillins, aztreonam, 2/3/4 generation cephalosporins, (predicted)	bla _{TEM-1} bla _{CTX-M}	

Example Results: RFH Sample 72 (ETT)

Method	Organism	Resistance Phenotype	Resistance genotype
Routine microbiology	Normal Respiratory Flora	NA	NA
Unyvero	E. coli (+++) P. aeruginosa(+++)	Penicillins, fluoroquinolones (predicted)	bla _{TEM-1} GyrA83, GyrA87
FilmArray	E. coli (>10 ⁷) P. aeruginosa (>10 ⁷)	NA	None detected
MinION	<i>E. coli</i> (14.5% reads) <i>P. aeruginosa</i> (43.4% reads)	Penicillins, (predicted)	bla _{TEM-1}

Example Results: CW Sample 5 (ETT)

Method	Organism	Resistance Phenotype	Resistance genotype	
Routine microbiology	P. aeruginosa K. pneumoniae	PA: none KP: Gentamicin, trimethoprim	NA	
Unyvero	P. aeruginosa(+++) S. maltophila (+)	Penicillins	bla _{sHV}	
FilmArray	P. aeruginosa (>10 ⁷) S. agalactiae (10 ⁵)	NA	None detected	
MinION	<i>P. aeruginosa</i> (87.8% reads)	NA	None detected	

Can MinION Metganomic Sequencing be used to predict AMR?

- Proof of concept study attempting to predict full antimicrobial susceptibility profiles directly from bacteria in INHALE samples
- Compared to full phenotypic susceptibility testing & troubleshooting using PCR, Sanger Sequencing & Illumina Sequencing
- Limited to *E. coli* and *K. pneumoniae* in the first instance

Results: AST phenotype vs MinION prediction

- Successfully identified 7 *E.coli* isolates and 3 *K. pneumoniae* isolates
- AMR Prediction Sensitivity: **71.2%** AMR Prediction Specificity: **98.4%**

Strain	Predicted MinION Phenotype	MinION Genotype	Actual Resistance Phenotype			
	amoxicillin	bla _{TEM-1}	amoxicillin, co-trimoxazole, gentamicin,			
	<mark>co-trimoxazole</mark>	<mark>aac(3)-II</mark>	piperacillin/tazobactam, co-trimoxazole,			
Sample 1	<mark>gentamicin</mark>	sul1	<mark>tobramycin, trimethoprim,</mark> amoxicillin/clavulanate, cefepime			
E. coli	<mark>trimethoprim</mark>	dfrA12				
	tobramycin					
	amoxicillin	<mark>bla_{тем}</mark>	amoxicillin, streptomycin,			
Sample 2	streptomycin	sul2	sulphamethoxazole, tetracycline			
E. coli	sulphamethoxazole	<mark>strA</mark>				
		<mark>strB</mark>				
	amoxicillin, amoxicillin/clavulanate,	bla _{CTX-M} catB3	amoxicillin, amoxicillin/clavulanate,			
Commits 2	ceftazidime, ciprofloxacin,	aac-6'-1b dfrA1	ceftazidime, ciprofloxacin, gentamicin,			
Sample 3	gentamicin, piperacillin/tazobactam,	bla _{TEM-1} sul1	piperacillin/tazobactam, streptomycin,			
K. Pneumoniae	streptomycin, trimethoprim,	straA strB	trimethoprim, suphamethoxazole,			
	suphamethoxazole, co-trimoxazole	aadA1	co-trimoxazole, tetracycline			

Key:

Agreement

Disagreement

Difficult to Interpret

Discrepancies between culture and MinION

Demonstrates the **future potential** of MinION sequencing for the **rapid identification** of pathogenic bacteria and predicting resistance phenotypes. Sensitivity should be further improved by **resolving database deficiencies** and using **enhanced bioinformatics**.

WP3 INHALE RCT

FilmArray Torch placed at Point of Care within 12 Critical Care Units

INHALE Prescribing Algorithm

Key No known allergy to antibiotics Mild allergy to β -lactams i.e. rash Severe allergy to β -lactams, i.e. anaphylaxis Not applicable

Table 2. Recommended treatment for combination of TWO or more organisms are detected by FilmArray

PLEASE READ THIS TABLE FROM LEFT TO RIGHT

Coloured boxes refer to allergy status as in Table 1.

Key: + organism present, - organism absent, ± either present or absent

	First, What combination of bacteria have been found?					Second:	Third:	Third: if resistance genes found			
A. kaumannii	Enterobacteriales: E. gerogenes, E. cloacae, E. coli, K. pneumoniae, K. oxytoca, Proteus sp., S. marcescens	P. aeruginosa	H. influenzae/M. satarrhalis	S. aureus	5. agalactiae. 5. pneumoniae. or 5. <u>pyogenes</u> .	Therapy if no resistance genes	mecA/C found	CTX-M found	C. pneumoniae. L. pneumophila OR M. pneumoniae.	Carbapen- emase found	
		Does the mix	ture include <u>Ac</u>	inetobacter? If Y	ES ; stay with t	his block; if N	O, go to next bl	ock			
+	Any one or more second organism found				Meropenem ^a	Add Glycopeptide ¹⁰ OR Linezolid	-	Add Macrolide ¹¹ OR Levofloxacin or Ciprofloxacin	Discuss with Micro- biology		
+	± Any one or more second organism found				Meropenem ^a	Add Glycopeptide ¹⁰ OR Linezolid	-	Add Macrolide ¹¹ OR Levofloxacin or Ciprofloxacin	Discuss with Micro- biology		
+	Add Levofloxacin or Ciprofloxacin ⁹	Add Levofloxacin or Ciprofloxacin 9	Add Levofloxacin or Ciprofloxacin ⁹	Add Glycopeptide ¹⁰ OR Linezolid	Add Glycopeptide ¹⁰ OR Linezolid	Colistin Combination	Add Glycopeptide ¹⁰ OR Linezolid	Discuss with Micro- biology	Add Macrolide ¹¹ OR Levofloxacin or Ciprofloxacin	Discuss with Micro- biology	

WP4: Behavioral Study

Created by Linseed Studio from Noun Project

Consultant: I think time was a big thing because there were fewer people on at night, there is no boss. You're racking around trying to get to see everyone with all the admissions coming in as well. And then you see, oh, he's had a temperature and the nurse is flapping around and keeps phoning me about it, oh, give him some Augmentin and on we go. And perhaps I didn't give it as much thought when I was pressured or rushed.

UCL/UCLH

Dr. Vanya Gant Mr Alp Aydin Mr. Dewi Owen Dr. Zaneeta Dhesi Dr. Federico Ricciardi Dr Julie Barber Dr David Brealey Ms. Alyssa Pandolfo Prof. Robert Horne

Industrial Collaborators

bioMerieux Biofire

Oxford Nanopore Technologies

Curetis GmbH

University of East Anglia/Quadram Institute Prof. David Livermore Dr. Justin O'Grady Dr. Rossella Baldan Dr. Hollian Richardson Ms. Charlotte Russell Ms. Juliet High Mr. Antony Colles Prof. Ann Marie Swart The INHALE Study Team & Staff at Participating Hospitals

University of

East Anglia

and Laboratories

r Health Research

FUNDED BY

Funder's Statement

- This presentation presents independent research funded by the National Institute for Health Research (NIHR) under its Programme Grants for Applied Research Programme (Reference Number RP-PG-0514-20018).
- The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health."