How to obtain good quality nucleic acid for MinION sequencing

Alp Aydin QIB
Sequencing chemistry
Types of kits

Broadly speaking, DNA:

1) Ligation Kits – adaptor is ligated to the end of DNA with ligase

![Diagram of DNA preparation process]

- High molecular weight gDNA
- Optional fragmentation or size selection
- End-prep and nick repair
- Ligation of sequencing adapters
- Loading

PCR, multiplex, and 1D² options

Pros:
- Most control over size
- Highest yield

Cons:
- Longer
- More room for error
- More expensive (additional reagents)
2) Rapid Kits – transposase cuts DNA and allows adaptor to attach

- **Pros:**
 - Very fast
 - Simple

- **Cons:**
 - Less control over size
 - Lower yield

PCR and multiplex options
Types of kits

RNA:

1) Direct native RNA sequencing (Ligation based)

Pros:
• No reverse transcription or PCR bias

Cons:
• Much lower yield
• Early technology

2) cDNA sequencing (Ligation based)

Pros:
• Higher yield
• PCR option (lower input)

Cons:
• Takes much longer
• Requires reverse transcription
Extraction – up to you

• Extraction method will depend on what you are trying to extract and the purpose.

• Generally: Fresh cells and fresh extractions are best

• Lysis: Chemical, mechanical (bead-beating), enzymatic

• Isolation: phenol/chloroform, spin-column, SPRI beads

• Consider: Depletion or enrichment pre-extraction

• Consider: DNase or RNase step

• Options: Manual, automated
How much do you need? (DNA input)

- Nanopore sequencing is not so much about mass (e.g. nanograms) but about molecules (e.g. femtomoles).
- If size and mass is known, calculate fmol. However, if size is difficult to (HMW) determine. Use input guidelines per kit.

DNA Ligation kits

- **1000ng**: use as is *(per sample)*
- **100-500ng**: shear DNA
- **100ng**: use PCR (PSK004 kit)
- Short: calculate fmol, use **200 fmol**

DNA Rapid kits

- **400ng** *(per sample)*
- If you want longer reads: **1600+ ng**
- If low DNA, use PCR (RPB004 kit)
 - input **1-10ng**
How much do you need? (RNA input)

Direct RNA sequencing

✓ **500ng** of poly-A RNA

CDNA sequencing

✓ **100ng** of input poly-A RNA

➢ If low, use PCR cDNA kit

 - input **1ng** poly-A RNA or **50ng** total RNA
How much do you load?

- Follow all protocol-specified DNA washes. Purity is important for PCRs and sequencing. Biggest source of DNA loss.

- If you end up with a surplus, do not be tempted to load all of it.

- Overloading will mean sequencing fuel is used up faster = lower yield.

- If possible (e.g. for short DNA/Rapid Kits/PCR kits) measure size and quantity (mass), calculate to load ~50-100 fmol.

- If still HMW after processing e.g. for Ligation kits, load ~400-600 ng.
How long should it be? Up to you

• No fragmentation or size selection required.

• Record read length: 2,200,000+ basepairs

• Longest reads achieved with Rapid Kit. More input = longer reads (but poor yield)

• Longer reads = better assemblies.

• More reliable sequencing with ligation kit if DNA is sheared (more ‘ligatable’ ends)

• Not degraded or too short - (Rapid Kit input recommendation >30kb)
Selecting the size

Size will depend on extraction but you can tweak average size after.

- Shearing: Covaris g-Tubes
- Small fragment removal: SPRI beads (limited size range) 0.4x absolute minimum.
- Size fractionation device such as the SageELF
Handling DNA

To preserve long fragments (if a priority)

- Avoid unnecessary pipetting or vortexing of DNA
- Avoid freeze-thawing DNA
- Use wide-bore pipette tips
- For 45kb+ DNA, drying step not recommended using SPRI beads
- Incubate DNA for longer and at higher temperatures during elution steps (e.g. at 37 C)
Number of samples / yield

- Maximum MinION yield ~30 gigabases (normally lower)
- Don’t think about how many samples you CAN multiplex, but how many samples you SHOULD multiplex
- Consider using other devices if yield is redundant or too low

PromethION max yield: ~148gb

Flongle max yield: ~1.8gb

Example:
- MinION run of stool sample yields 15gb
- Detecting Campylobacter (1.6mb genome)
- Usually low proportion of reads (e.g. 1%)
- 1 Sample run = 93x coverage
- 12 Sample run = 8x coverage
Checking your DNA/RNA
Quantity

• Check quantity with Qubit

• Use higher volumes (if possible to spare) for more accurate readings

• New standards each time you create the working buffer

• Avoid Nanodrop for quantification – overrepresents quantity
Quality

- Use Nanodrop to only check for potential contaminants
- 260/280 ratio of 1.8 = ‘pure DNA’
- 260/280 ratio of 2.0 = ‘pure RNA’
- 260/230 ratio of 2.0-2.2 = ‘clean’
 Lower = impure
- Carryover Ethanol not easily detected on Nanodrop
- Ratios unreliable at low concentrations
Size and integrity

- Use Tapestation for size and integrity (not degraded)
- DIN/RIN value = integrity (higher = better)
- Long fragments less reliable (don’t assume 30kb = exactly 30kb)
- Don’t just focus on peak, focus on 100-1000bp area
Tapestation – short fragments
Checking quality by sequencing

- Worth checking libraries on Flongle before expensive PromethION run
Assessing your library in MinKNOW

Check for:
- Available pores
- Pore occupancy
- Adaptors

<table>
<thead>
<tr>
<th>Available pores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pore occupancy</td>
</tr>
<tr>
<td>Adaptors</td>
</tr>
</tbody>
</table>
Remember for sequencing:

GARBAGE IN = GARBAGE OUT

Questions?