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ANALYSIS AND INTERPRETATION 
 

From the Therapy chapter for the 3rd edition of Clinical Epidemiology, by DL Sackett 
17 April 2004 (day 108) 

 
 

 
Analysis and Interpretation Check List: 
Before you begin your trial, and based on your study question: 
1   Draft “Table 1” summarizing the entry characteristics of experimental and control patients. 
2   Specify your primary and secondary data analyses  
3   Specify your subgroup analyses 
4   Select your analytic methods for deciding whether your treatment effect is “real”. 
5   Decide how to handle missing data in the analysis. 
6   Decide how you will interpret your results to determine their “importance” 
7   Establish interim analysis plans and statistical warning rules for efficacy, safety, and 

futility 
After your trial is over 
 8  Don’t exaggerate your conclusions, especially about subgroups 
9  Report your results regardless of their interpretation 

10  Update the systematic review that justified your trial 
11  Formulate the logical question for your next trial 
 
Preface: Is this section really necessary? 
 
In the opening paragraphs of this chapter, I stressed the importance of recruiting a statistician as 
co-principal investigator right at the start of formulating the question for your RCT.  Why, then, 
intrude on their turf with a section on the analysis and interpretation of the trial?  My reasons are 
three.  First, as you can see from the checklist, several of the issues are not strictly statistical 
(specifying what to analyze, interpreting your results, and the like).  Second, co-PIs are precisely 
that, and everyone with that title should collaborate in the discussion and debate at every step in 
the trial.  Accordingly, this section’s first function is to provide non-statisticians with a sufficient 
introduction to RCT analysis to help you contribute to those discussions and debates.  Third, 
when some non-statistician trialists get their feet wet in statistics, they discover (to their surprise 
and mine) that they enjoy learning more about it.  So, this section’s final function is to whet some 
appetites. 
 
We used parametric (t-test) and nonparametric (chi-squared) tests to analyze base-line 
differences among study groups, associated hematologic investigations, and compliance.  We 
used the log-rank life-table method suggested by a team of experts led by Richard Peto1for our 
primary analysis.  This primary analysis assessed the overall benefit of aspirin and sulfinpyrazone 
in all patients.  However, we also judged it important to examine the relative efficacy of these 
drugs among clinically sensible subgroups.  We advised readers to interpret these secondary 
analyses with caution since true significance levels are affected by repeated challenges of the 
data. 
 
We monitored withdrawals to detect possible drug toxicity.  
  
Our first examination of the data for efficacy occurred in April 1976, when we had entered 569 
patients into the study.  At that time there was a trend favoring aspirin that was not statistically 
significant.  We decided to continue admitting patients until June 30, 1976, by which time we 
expected to reach the target of 600 patients.  We would then follow all patients for a further 12 
months, analyze, and interpret our results. 
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In our primary analysis, aspirin achieved a statistically significant (P<0.05) reduction in the 
composite hierarchy of TIA, stroke and death.  In a secondary analysis that excluded TIAs, 
aspirin still achieved a statistically significant (P<0.05) reduction in stroke and death.  
Sulfinpyrazone was not effective.  Aspirin produced a relative risk reduction of 31% and an 
absolute risk reduction of 7.2%  for stroke and death.  Thus, the Number of patients one Needed 
to Treat (NNT) with aspirin for 2 years to prevent another stroke or death was 14.  The Number of 
Patients one Needed to treat to Harm one of them (NNH) with a major gastrointestinal bleeding 
over that same period was 48.   
 
I later decided that one of our planned analyses was a bad idea.  Can you guess which one that 
was?  Read on. 
 
Let’s proceed with the checklist. 
 
 
1. Draft “Table 1” summarizing the entry characteristics of experimental and control 
patients. 
 
The first table in your RCT report describes and compares the entry characteristics of your 
experimental and control patients.  We suggest that you show “empty” drafts of this table to 
potential clinical collaborators, including especially those who you hope to influence with its 
results.  Typically, such tables include characteristics likely to influence risk or responsiveness to 
treatment, plus sociodemographic items.  We already showed you Table 1 for men in the RRPCE 
trial as Table 3-6-2, and it was accompanied by similar tables for women and for the occurrence 
and timing of their qualifying TIAs.  As we noted back in Table 3-6-1, a baseline imbalance 
between treatment groups for important prognostic characteristics can damage a trial’s credibility 
in ways that multivariate statistical adjustments can never rehabilitate.  Accordingly, when you 
create your first draft of your Table 1 before you start the trial, you should decide whether to take 
steps (such as stratification-before-randomization or minimization) to be sure that your trial is 
credible as well as valid. 
 
In answer to the question posed at the end of the scenario, I think we erred in applying 
significance tests to our Table 1, and recommend against it.  In a small trial, minimallyimportant 
differences might be statistically non-significant.  But they should be prevented, not documented 
after the fact.  I’ve described their preventives (minimization or stratification prior to 
randomization) in section 3-06 on allocation.  Conversely, in a large trial, trivial differences will 
routinely be statistically significant, and will suggest important imbalance when it is absent.  
 
Many trialists seek statistical reassurance that baseline imbalances didn’t affect their trial results.  
They do this by performing multivariate outcome analyses in which they adjust for one or more 
baseline factors.  Some statisticians disagree with this approach2.  When Stuart Pocock’s team 
reviewed 50 RCT reports in general medical journals, 72% of them included such analyses (but 
gave reasons for doing so only about half the time)3.  When performed, the “covariate adjusted” 
analyses received more emphasis than the unadjusted analysis about a third of the time.  
However, only one report changed its conclusion (incorrectly, in the Pocock team’s opinion) on 
the basis of an adjusted analysis. 
 
 
2. Specify your primary and secondary data analyses. 
 
Which events, at what point or over what period of time, will answer your trial’s primary question?  
If you did a good “PICOT” job of specifying your question back at the beginning, this should be an 
automatic decision.  Even if your question addresses equivalence or non-inferiority (but greater 
safety or lesser cost), the issues are the same.  Later portions of this section will focus on this 
primary analysis.   
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My co-authors and I carry out 5 sorts of secondary analyses in our RCTs.  They deal with 
determining safety, subdividing a composite primary outcome, assessing secondary outcomes, 
confirming homogeneity across clinical subgroups and centers, and generating hypotheses for 
our next RCT.  Most of these analyses are straightforward and trustworthy, but others can 
mislead.  And subgroup analysis is tricky enough to deserve its own section below. 
 
i. Determining Safety:  These document the magnitude, timing, severity, and outcomes of 
adverse responses to your experimental therapy.  Such “safety” secondary analyses are routine 
in planning and conducting RCTs, and often must adhere to rigorous external regulations in 
reporting. 
 
ii. Sub-dividing a composite primary outcome:  As you learned on page xxx, in order to 
generate enough events to achieve a statistically significant result, many RCTs create composite 
primary outcomes.  Some of these combine primary events (such as death or heart attack), and 
some may add predicaments (such as the need for hospitalization for unstable angina or heart 
failure, or the need to perform angioplasty).  Others are “hierarchies” that combine frequent mild 
events with their less common but more severe sequalae.  As already reported, in the RRPCE 
study, our primary outcome was a composite of continuing TIA, stroke, or death.  Although TIAs 
are clinically important, their inclusion in the primary outcome was, in part, a sample-size “hedge.”  
Because they occurred much more frequently than stroke or death, they contributed lots more 
events to the primary analysis, and increased the trial’s power (i.e., its ability to find, and label as 
statistically significant, a beneficial effect of aspirin).  Once we had our positive primary outcome, 
we removed patients who only had continuing TIAs and did a secondary analysis on just strokes 
and deaths.  If you’re wondering why we didn’t analyze TIAs all by themselves, you’d better 
(re)read about diagnostic hierarchies in Section 3-08 on Events. 
 
iii. Assessing secondary outcomes:  Lots of RCT outcomes are secondary by design.  For 
several of our cerebrovascular trials, Brian Haynes developed measures that captured how well 
our patients retained their independence in communicating, dressing, eating, toileting, shopping, 
and the like4.  These measures provided important functional confirmation of the consequences 
of the clinical events in these RCTs.  Because every patient contributes a functional “event” in the 
analysis, we were confident that we would have ample sample size to demonstrate any minimally 
important differences in function, and we were right.   
 
For example, in NASCET we let our collaborating surgeons decide the dose of aspirin given to 
trial patients at the time of their surgery.  In dredging our data, we found, to our surprise, that 
patients taking 650-1300 mg of aspirin daily at the time of surgery were much less likely to suffer 
perioperative stroke or death (1.8%) than patients taking 0-325 mg of aspirin (6.9%).  As with any 
other clinical observation, we could come up with a biologic explanation that would tidily explain 
this finding5.  But these were Level 2b cohort data discovered while looking for the pony.  Wayne 
Taylor decided they weren’t a sound enough basis for clinical practice, and led a subsequent 
RCT that asked: “Among patients undergoing carotid endarterectomy, would giving them 81, or 
325, or 650, or 1300 mg of aspirin, starting before their surgery and continuing thereafter, reduce 
their risk of stroke, myocardial infarction or death at 30 and 90 days?”  Some surgeons were 
convinced that high-dose aspirin was efficacious and refused to join this second trial.  However, 
enough of them and their patients did join to give us the startling and important answer that low-
dose aspirin, not high-dose aspirin, was best at preventing stroke and death following surgery6. 
 
iv. Generating hypotheses for your next RCT:  You shouldn’t hesitate to perform “exploratory 
data analyses” or “data-dredging” to look for subgroups of patients who display major differences 
in their responses to therapy.  However, the purpose for this search must never be to draw 
conclusions about subgroup efficacy.  Rather, it is to generate questions to ask in your next trial.  
This quest shouldn’t be undertaken until you understand how to wield the two-edged sword of 
subgroup analysis, so I’ll take that up here.   
 
3. Specify your subgroup analyses: 
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You will want to determine whether your primary result is consistent across clinically sensible 
subgroups.  Our confidence (and our readers’ confidence!) in our positive NASCET result was 
raised when we found consistent efficacy in clinically sensible subgroups based on sex, site and 
type of qualifying TIA, and comorbidity.  In multicenter trials, you will often look for similar results 
across centers and countries.  For example, in the RRPCE trial we found that 14 of our 24 
centers (contributing 75% of our patients) agreed with the overall result; 5 centers (contributing 
10% of our patients) showed no trend, and 5 (contributing 15% of our patients) showed a reverse 
trend.  A test for heterogeneity across centers was not statistically significant, but if it had been, 
we’d have performed a “sensitivity analysis” to see whether excluding the centers with the most 
extreme results affected our conclusion about efficacy.   
 
You shouldn’t be surprised to find minor differences in the degree of therapeutic responsiveness 
of different subgroups of patients in your trial.  I’ll call these “quantitative” interactions, to denote 
that they represent differences in the degree of efficacy, such that one clinical subgroup is slightly 
more or less responsive to experimental therapy than another.  For example, in the NASCET trial 
the relative risk reduction (RRR) for ipsilateral stroke rose with increasing symptomatic carotid 
stenosis (from 12% in patients with 70-79% stenoses, to 18% in patients with 80-89% stenoses, 
and 26% in patients with 90-99% stenoses).    
 
But alarm bells should sound when your secondary analysis suggests a “qualitative” difference in 
efficacy between subgroups.  By “qualitative” difference, I mean finding that experimental 
treatment is clearly efficacious in one subgroup and clearly (and statistically significantly) harmful 
or “confidently ineffective” in another.  By “confidently ineffective,” I mean that the 95% 
confidence interval for efficacy in that subgroup excludes anyhumanly useful benefit.    
 
Secondary analyses among clinical subgroups can mislead you, for if you carry out enough of 
them, you are guaranteed to find one by chance alone.  Even when supported by statistical tests 
for an interaction between efficacy and the presence or absence of a subgroup’s identifying 
characteristic, these sorts of secondary analyses can mislead.  Furthermore, the risks of over-
interpreting subgroup analyses go beyond mere mischief.  They include withholding efficacious 
treatment from subgroups who need it, forcing useless treatments on subgroups who don’t, and 
wasting millions of dollars on research to clean up the messes.  For example, in the RRPCE trial 
we concluded that aspirin worked in men but not women (wrong!), and that it didn’t work among 
diabetics (wrong again!) or in patients with a past history of myocardial infarction (wrong yet 
again!).  The same Christmas story about “looking for the pony” that helped us explain the 
dangers of performing multiple diagnostic tests on patients in the 2nd edition of this book7 is useful 
here: 
 
“Looking for the pony” comes from a Christmas tale of two brothers, one of whom was an 
incurable pessimist and the other, an incurable optimist.  On Christmas day, the pessimist was 
given a roomful of shiny toys and the optimist, a roomful of horseshit.  The pessimist opened the 
door to his roomful of toys, sighed, and lamented, “A lot of these are motor driven and their 
batteries will run down; and I suppose I’ll have to show them to my cousins, who’ll break some 
and steal others; and their paint will chip; and they’ll wear out.  All in all, I wish you hadn’t given 
me this roomful of toys.”  The optimist opened the door to his roomful of horseshit and, with a 
whoop of glee, threw himself into the muck, and began burrowing through it.  When his horrified 
parents extracted his from the excrement and asked him why on earth he was thrashing about in 
it, he joyfully cried: ”With all this horse shit, there’s got to be a pony in here somewhere!” 
 
There are 2 ways to safeguard against spurious “qualitative interactions.”  First, you can limit your 
secondary analyses of subgroups to just 1 or 2 of them, carefully pre-specified in the protocol.  
Second, if you think that you will find an important qualitative interaction between subgroups, you 
can design separate and simultaneous trials for each of them.  Each of these trials should have a 
sufficient sample size to answer the question.  For example, in NASCET we suspected that there 
should be a qualitative interaction between the efficacy of surgery and the degree of carotid 
stenosis.  We thought that it probably would produce a big net benefit among patients with high-
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grade stenoses but that it might be useless or even harmful among patients with only moderate 
stenoses).  We therefore designed and carried out two simultaneous trials, one for each of them, 
but with the same study staff and follow-up apparatus. 
 
In summary, it’s fine to perform “exploratory data analyses” or “data-dredging” to look for the pony 
you might like to ride in your next trial, as long as you don’t draw conclusions about subgroup 
efficacy.   
  
4. Select your analytic methods for deciding whether your treatment effect is “real.” 
I will provide you with only the “bare bones” of an approach to statistical analysis in this chapter.  
No readers in their right minds should undertake RCTs without biostatisticians as co-Principal 
Investigators, and I reckon that most of you already will have taken at least an introductory course 
in biostatistics.  If any of the following ideas and suggestions are unclear, I suggest that you read 
Gordon Guyatt’s chapter on statistics.  If that doesn’t help, consult your co-PI and/or your favorite 
statistical text (mine is Doug Altman’s Practical Statistics for Medical Research8) 
  
 
Short-term parallel trials 
 
As with other steps in executing your trial, the selection of the “right” analytic method depends on 
the question you posed.  If yours is a short term trial (say a few days or weeks) in which your 
question calls for a simple comparison of homogenous groups of patients at the end of this time 
period, then simple statistical analyses will do.  For short-term parallel trials with events (say, the 
occurrence of immediate side effects after taking an established drug and its newer, presumably 
better-tolerated nephew), a straightforward chi-squared test will serve just fine.  For short-term 
parallel trials with continuous measurements (say, which of two bronchodilators produces a better 
improvement in the ease of breathing [FEV-1] 30 minutes later), your statistician co-PI will 
probably use an analysis of covariance.  When you analyze a result as both an event (such as 
achieving goal blood pressure) and as a continuous measure (such as average blood pressure 
reduction), you need to specify up front which analysis will take precedence in answering your 
trial’s question.  Remember, however, that you will require far more patients to show a real 
difference in event rates (using the chi-squared family of statistics) than in averages (the t-test 
family).  
  
 
Short-term crossover trials 
 
Short term cross-over trials would use the analogous paired tests: the McNemar chi-squared or 
the paired t-test, and we show an example of the latter in Table 3-09-1, which displays treatment 
effects (∆) in patients who have been allocated to receive treatment A or B in the first period and 
the other treatment in the second period: 
 
Table 3-09-1: Treatment effects (∆) in a crossover trial: 
 

  Effects of Treatment (∆) 
 

  Period 1 
 

Period 2 
 

 
 
 

Patient  

 
A first 

 

 
∆ A1 

 

 
∆ B2 

 
 

Allocation  
B first 
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 ∆ B1 
 
 

∆ A2 
 

 
 
However, before you carry out the paired t-test on the data from a cross-over trial (∆ all A vs. ∆ all 
B), you need to be sure that it is an unbiased analysis, unaffected by “carry-over” or “calendar”:  

1. You’ll need to find out whether there has been any “carry-over” effect of the treatment 
given in the first period into the second period.  This is found by comparing the results 
within each treatment when it is given first and second: (∆ A1 vs ∆ A2 and ∆ B1 vs. ∆ 
B2); you’ll need to show that they are not statistically significantly different in the two 
periods before you can combine them.  
 

2. You’ll need to find out whether there has been any a “calendar” or “temporal” effect in 
which the patients’ underlying illness is getting better (i.e., recovering) or worse with the 
simple passage of time.  You can do this by comparing the differences between 
treatments in the first and second periods: ([∆ A1 minus ∆ B1] and ([∆ A2 minus ∆ B2]).  
Again, you’d need these to be roughly equal before carrying out the paired t-test on the 
overall result. 

 
 
Long-term trials: 
 
Most of the trials I’ve carried out have been long-term ones (lasting from two to several years) in 
which we were hoping to either prevent, or at least postpone, bad outcomes among patients at 
varying risk for these outcomes.  Two special features of these trials have to be taken into 
account in their analyses, and these are illustrated in Figure 3-09-1 for experimental patients who 
enter a trial at point (E), and thereafter may (or may not) go on to minor events (mi), major events 
(Ma), die (D) or become lost-to-follow-up (L).   
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Figure 3-09-1:  Patients in a long-term trial, in real time: 
 
   ⇢    ⇢    ⇢    ⇢    ⇢    ⇢    ⇢    ⇢    ⇢  Real Time    ⇢    ⇢    ⇢    ⇢    ⇢    ⇢    ⇢    ⇢    ⇢    ⇢ 
 

Recruitment 
S 
T 
A 
R 
T 

 
 
 
 
 
Pt 

 

  
E 
N 
D 

                                        Follow-Up                          

End
of the
Study
       

                       
1 E 
                       
2 E           D                           
                       
3  E 
                       
4  E                                                                                       D  
                       
5  E                                                        L                        D? 
                       
6  E                   mi 
                       
7  E                                                                                        mi   Ma   D  
                       
8  E   Ma 
                       
9  E  mi  Ma   D  
                       
 
Legend: E=enters the study  mi=minor event  Ma=major event  D=death  L=Lost-to-Follow-Up 
 
 
The first of these special features in long-term trials is that patients enter them throughout a 
recruitment period that can last for years, and finish these trials either at the variable time of their 
terminating event (such as death) or at a common stopping time at the close of the trial.  As a 
result, individual patients are in the trial for widely different periods of time or “durations of follow-
up.”  In Figure 3-09-1, Patient 1 survives the entire trial, but Patient 2 is dead even before the end 
of the recruitment period; Patients 1, 3, 6 and 8 are all present at the end of the study, but their 
follow-up times differ; Patients 1 and 7 sail through the trial event-free, but Patient 1 is followed 
for much longer.   
 
The second special feature of long-term trials is that their treatment objectives include 
postponement of disabling or fatal outcomes (such as severe stroke or death) and not just their 
prevention (after all, if the trial went on for decades, everyone in it or working on it would 
eventually die).  For example, both Patients 2 and 4 die, but Patient 4 lives event-free much 
longer.  Both Patients 7 and 9 suffer minor, major, and fatal events, but Patient 9 has them in a 
cluster.  Finally, Patient 5 is lost to follow-up, but still has more time in the study than Patients 2 or 
9; moreover, a surveillance of the national death registry detects Patient 5’s death some time 
later.  Our analyses of such trials have to take these special features of variable length of follow-
up and outcome-postponement-as-well-as-prevention into account. 
 
The tactics of doing so begin with ignoring calendar time and thinking of patients as if they all 
entered the study at the same, common starting point, as shown in Table 3-09-2. 
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Figure 3-09-2:  Patients in a long-term trial, taken back to a common starting point: 
 
Pt    ⇢    ⇢    ⇢    ⇢    ⇢    ⇢    ⇢    ⇢    ⇢  Time    ⇢    ⇢    ⇢    ⇢    ⇢    ⇢    ⇢    ⇢    ⇢     

 
                       
1 E 
                       
2 E                        D  
                       
3 E  
                       
4 E                                                                                             D  
                       
5 E                                                            L                                        D? 
                       
6 E                      mi  
                       
7 E                                                                                                  mi   Ma   D  
                       
8 E   Ma  
                       
9 E  mi    Ma   D  
                       
 
Legend: E=enters the study  mi=minor event  Ma=major event  D=death  L=Lost-to-Follow-Up 
 
[Note to Editor: the symbols keep changing every time I “save” tables 3-09-1&2, so I’ll need to be 
sure to check them when they are drafted. DLS] 
 
The result, which is one variant of a “life-table,” now more clearly reveals the differences in 
“survival” and follow-up, as well as the relative timing of events between patients in the trial.  
From such a table, we can calculate the proportion of experimental patients who are event-free at 
any given time after entry, and the resulting graph is called a “survival curve.”  One variant of a 
survival curve breaks follow-up time into small intervals, say days, and considers the probability 
that patients alive at the start of each day are likely to survive event-free to the start of the next 
day.  As it happens, the probability of surviving event-free to day #120 is the “conditional” 
probability of surviving on day #120, given that you’ve already survived day #119.  Survival 
curves generated in this fashion don’t require assumptions about the nature of any theoretical 
“underlying distribution” of “true” probabilities we are guessing at in the trial, and are called 
“nonparametric” or “distribution-free.”  The one we’ve just generated is called a “Kaplan-Meier” 
survival curve after Edward Kaplan and Paul Meier, the statisticians who described this useful 
way of thinking about survival9.  By this method we can calculate the probability of “surviving” 
event-free at any point in the trial or throughout it for experimental and control patients, and can 
generate a “noise” factor (say, the standard error) for each probability.  The Kaplan-Meier curves 
for any major stroke or death in the surgical and medical arms of the high-grade stenosis 
NASCET trial are shown in Figure 3-09-3. 
 
Figure 3-09-3. Kaplan-Meier Curves for major stroke or death in the surgical and medical arms of 
the high-grade stenosis NASCET trial. 
 
{This should be taken from Figure 1-F on page 449 of: North American Symptomatic Carotid 
Endarterectomy Trial (NASCET) Collaborators.  Beneficial effect of carotid endarterectomy in 
symptomatic patients with high-grade carotid stenosis.  N Engl J Med 1991;325:445-53.} 
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The next step is to compare the survival curves generated for experimental and control patients.  
The method that my co-PI statistical colleagues routinely use compares the number of events we 
Observe in each treatment group during any interval (say, any given day) with the number of 
events we’d Expect to observe if there was no difference in efficacy between the experimental 
and control treatments.  We then cumulate, over each interval of time, the (O – E) / E and the 
result is our old friend chi-squared, with (the number of intervals – 1) degrees of freedom.  We 
call this form of analysis the “log-rank life-table” method, and credit for its elegant simplicity goes 
to Richard Peto.  It tells us whether any difference in the events we observe between 
experimental and control patients is real; that is, whether that difference in events is “statistically 
significant.”   
 
A final point before we move on.  The foregoing discussion is about events.  However, it can be 
carried to a higher statistical plane by considering not just whether an event occurred, but the 
time elapsed between entry and that event.  This “time-to-event” analysis is more powerful, but 
beyond the scope of this chapter.  Similarly, many long-term trials include continuous outcome 
measures such as functional capacity and quality of life.  They also present analytic difficulties, 
especially when patients die or otherwise stop contributing to these measures early in the trial.  
Analyses of continuous measures are taken up by Gordon Guyatt in Chapter 6.  
 
I’ve already beaten to death the analysis of 1-sided superiority and noninferiority trials back on 
pages xx-xx. 
      
 
5. Decide how to handle missing data in the analysis. 
 
You need to decide, before the trial begins, how to handle patients like #5 in Table 3-09-1, who is 
lost to follow-up part way through the trial.  It is tempting to treat them as if they were lost on the 
final day of the trial, and “censor” anything bad that might have happened afterward.  This policy 
is risky for two reasons.  First, if they left the trial because their target condition was deteriorating, 
ignoring their possible bad outcome would bias your conclusion.  Second, ignoring them could 
lower the credibility of your conclusion.   
 
Beyond the obvious solutions of not losing any study patients in the first place, and scouring 
mortality registers for them in the second, what can you do?  I suggest that the most convincing 
way to handle them is a “worst-case scenario” in which you arbitrarily assign them the outcome 
that will make it hardest for you to answer your study question with a “yes.”  Suppose you are 
asking, “In patients of a particular sort, does experimental treatment E, when compared to control 
treatment C, reduce the risk of death?”  In the “worst-case scenario,” experimental patients who 
are lost get assigned the outcome of death, but control patients who are lost are assumed to have 
survived to the end of the trial.  You then present the analysis in two parts.  Part 1 “censors” lost 
patients from the moment they are lost, but in Part 2 they are returned in a “worst-case scenario.”  
Second only to the trial that doesn’t lose any patients at all, the trial with the highest credibility is 
the one in which the Part 2 worst-case scenario analysis reaches the same conclusion as the 
Part 1 censored analysis. 
 
Many trialists believe that the “worst-case scenario” approach is too harsh.  Various statistical 
“modeling” procedures have been proposed for assigning “appropriate” (but fictitious) outcomes 
to lost patients, and I leave it to you to discuss them with your statistical co-PI. 
 
 
6. Decide how you will interpret your results to determine their “importance” 
 
Chi-squared, t-tests, and the log-rank test are great at telling you whether your treatment effect is 
real (that is, unlikely to be due to chance).  However, they can’t tell you whether your treatment 
effect is great enough to be useful for patients.  Recalling that trivial treatment effects become 
statistically significant when trials enroll huge numbers of patients, the next step is to determine 
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whether the statistically significant difference your trial generated also exceeds some “minimally 
important difference“ (MID) that is deemed important by the trial participants (who, as the study 
“subjects,” could comprise patients, providers, teachers, administrators, etc).  This is a two-stage 
process; the first stage is mathematics, and the second stage is a judgment call.   
 
 
The mathematics of minimally important differences (MIDs) 
 
The mathematics are straightforward for a short-term parallel trial with events as outcomes, as 
you don’t need to adjust for the relative times at which patients entered the trial or had events.  In 
such trials, you simply determine the frequency of events in the control group (the Control Event 
Rate or CER) and in the experimental group (the Experimental Event Rate or EER).  For 
example, in our ACE trial of high-dose (experimental) vs. low-dose (control) aspirin to prevent 
stroke, myocardial infarction or death in the month following carotid endarterectomy, the 
Experimental Event Rate (EER) among high-dose patients was 8.2% and the Control Event Rate 
(CER) among low-dose patients was 3.7% (P=0.002)10.  
 
In a long-term parallel trial with events as outcomes, the same principle holds but we derive the 
Control Event Rate (CER) and Experimental Event Rate (EER) as “failure” probabilities from the 
Kaplan-Meier curves I’ve already shown you.  Kaplan-Meier Control Event Rates (CERs) and 
Experimental Event Rates (EERs) take into account both the fact that events are occurring 
throughout the trial and that their denominators are constantly changing as patients enter and 
leave the trial.  As a result, they are larger than the Control Event Rates (CERs) and 
Experimental Event Rates (EERs) you’d calculate (incorrectly) at the end of the trial if you simply 
divided the numbers of events by the numbers of patients enrolled.  In these long-term parallel 
trials, we generate the Kaplan-Meier Control Event Rate (CER) and Experimental Event Rate 
(EER) for some clinically sensible time (we selected 2 years after entry for the NASCET trial), and 
also generate their accompanying “noise” in the form of, say, a standard error.  Thus, in 
NASCET, the Kaplan-Meier estimates of the Control Event Rate (CER) for major stroke or death 
at 2 years was 18.1% but the Experimental Event Rate (EER) was only 8%. 
 
In trials with continuous outcomes, you have two choices.  You can stick with the absolute 
differences between control and experimental groups that you used for determining statistical 
significance.  Alternatively, you can convert these absolute differences into “events” by 
determining, for example, the rates at which control and experimental patients achieved some 
pre-set change in the continuous measure, or the rate at which they achieved a 50% reduction in 
a continuous measure of symptoms or disability.  I refer you to Gordon Guyatt’s section on 
continuous outcome measures for a complete discussion of the appropriate approaches. 
 
 
The judgements that determine which differences are minimally important  
 
In the second, judgment step we decide whether these differences are important.  This chapter 
will provide one example each from the perspectives of clinicians and patients, respectively.  
Patient’s perspectives on their minimally important differences will receive its major attention in 
the chapter on Outcomes (starting on page xx). 
 
A clinician’s MID:  The example here will be the number of patients the clinician will need to 
treat in order to prevent one more bad outcome (NNT) or cause one more harmful adverse event 
(NNH).  The results for all patients in an RCT generate a Control Event Rate (CER) and 
Experimental Event Rate (EER) for the average patient in the trial.  The resulting Absolute Risk 
Reduction (ARR) and Number Needed to be Treated to prevent one more event (NNT) also apply 
to the average patient in the trial.   
 
In the RRPCE trial, the Absolute Risk Reduction (ARR) for major stroke or death (CER – EER) 
among all patients treated with aspirin for 2 years was 7.2%, with its 95% Confidence Interval (CI) 
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running from 0.8% to 13.6%.  Inverting these Absolute Risk Reductions (ARRs) we find an NNT 
of 14 with a confidence interval from 8 to 125.   
 
These same methods apply to judging the importance of harm.  The Absolute Risk Increase (ARI) 
and its reciprocal, the Number needed to be Treated to Harm one more of them (NNH) can be 
generated from the side-effect rates in the experimental and control patients.  In the RRPCE trial, 
2.1% of patients who took aspirin for 2 years had severed gastrointestinal bleeds (with a 95% 
confidence interval from 0.97% to 4.4%); none of these bleeds were fatal.  Thus, the NNH for a 
severe bleeding episode was 48 with a confidence interval from 23 to 103. 
 
At the time we reported these results, there were no other treatments that had been shown in 
RCTs to reduce the risk of stroke among patients with TIAs.  It is therefore understandable why 
clinicians decided these results clearly exceeded their minimally important difference in stroke 
reduction, but did not exceed their minimally important difference for harm.  Aspirin use soared. 
 
But is aspirin for everyone?  There are clinically relevant subgroups of patients in most trials, and 
they might have important differences in their control and experimental event rates (CERs and 
EERs).  How might their risk and responsiveness be estimated by clinicians for extrapolation to 
similar groups of patients outside the trial?   
 
Most treatments (e.g., most drugs) are designed to prevent or slow the progression of disease.  
The RRPCE trial is a typical example.  And, there is growing empirical evidence that in trials of 
these “delaying” treatments, the Relative Risk Reduction (RRR) tends to be constant over a wide 
range of Control Event Rates (CERs)11,12.  That being so, a case can be made for using the trial’s 
overall Relative Risk Reduction (RRR} and applying it to groups of control patients at different 
baseline risks (CERs) to estimate their Absolute Risk Reductions (ARRs) and Numbers Needed 
to be Treated (NNTs) to prevent one more event.  The authors of this book disagree with each 
other  (a little, not a lot) about how much credence should be given to the subgroup Control Event 
Rates (CERs) in a trial.  I am less willing to accept them than my coauthors, especially when they 
have large Confidence Intervals (Cis), and would wait for the meta-analysis (ideally, on individual 
patient data) of several similar trials before I’d trust them.   
 
Anecdotal evidence suggests that Relative Risk Reductions (RRRs) might not be constant for 
treatments designed to reverse (as opposed to slow) the progress of disease.  I provided one 
anecdote in an earlier paragraph on subgroup analysis, where I described the rising Relative Risk 
Reduction (RRR) from carotid endarterectomy as it was performed on patients with progressively 
more severe carotid stenosis.  We don’t know enough about the behavior of other Relative Risk 
Reductions (RRRs) for “reversing” treatments among different subgroups to offer any firm advice 
on their extrapolation, save to say that you may have to rely on subgroups within the trial.    
 
A patient’s MID: This same RRPCR trial can be used to provide patients with information that 
they can use to determine their own minimally important difference.  Dr. Sharon Straus has 
pioneered a strategy for helping patients accomplish this13.  Her method combines the benefits of 
therapy with its accompanying risks, and then adds the patient’s own judgement about the 
relative severity of the bad outcome prevented by treatment (in this case, the stroke) and the bad 
outcome caused by treatment (in this case, the bleeding episode).   
 
The key step here is the patient’s decision about how much worse or better it would be to have a 
stroke than a bleeding episode.  Suppose a patient was at “average” risk of both the stroke and 
the bleed.  Suppose further that her health preferences and values were such that she 
considered having a stroke to be 4 times as bad as having a bleed.   With an NNH to cause a 
bleed of 48, an NNT to prevent a stroke of 14, and her judgment about severity (S) that having a 
stroke would be 4 times as bad as having a bleed, we can calculate the likelihood that she would 
be helped vs. harmed on her own terms by taking aspirin.  The formula for doing this is NNH x S / 
NNT.  In her case, and incorporating hew own heath preferences and values, she is 48 x 4 / 14 or 
over 13 times as likely to be helped vs. harmed over the next 2 years if she starts taking aspirin.     
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For one final wrinkle in this example of creating a patient’s MID, we needn’t even assume that 
she is an “average” patient.  Suppose that her risk of a stroke was only half that of the average 
patient in the RRPCE study, but that her risk of a bleed was twice that of the average trial patient.  
By applying Richard Cook’s modification14 in which these relative risks are expressed as decimal 
fraction and placed in the denominator of the corresponding NNT or NNH, her NNT to prevent a 
stroke rises from 14 to 14/0.5 or 28, and her NNH for suffering a bleed falls from 48 to 48/2 or 24.  
Even then, given that she considers a stroke to be 4 times as bad as a bleed, the likelihood that 
she’ll be helped vs. harmed by taking aspirin for the next two years is 24 x 4 / 28  or over 3 to 1. 
 
  
 
7. Establish interim analysis plans and statistical warning rules for efficacy, safety, and 
futility 
 
Assume that you are conducting a trial with a 3-year follow-up, but are employing 95% confidence 
intervals (or P <0.05) to its emerging “interim” results once a month.  You are at great risk of 
inappropriately stopping the trial for no good reason.  In the first place, if your pre-trial estimate of 
efficacy (say, an Absolute Risk Reduction of 5%) is accurate, then trials of it that stop early will be 
biased toward overestimating that efficacy, and you certainly don’t want to do that.  In the second 
place, trends in the early, unstable portions of trials can flirt with, or even cross, conventional 
boundaries of statistical significance for harm as well as benefit.  Finally, in the eyes (or entrails) 
of many statisticians, the performance of multiple interim analyses increases the risk of an 
ultimately false-positive conclusion (that the experimental treatment works, when in fact it doesn’t) 
at the end of the trial.  How can you avoid these pitfalls and still stop the trial as soon as your 
results are both statistically and, more important, clinically convincing? 
 
The first step is to withhold your first interim analysis until you have followed enough patients long 
enough for the real trends in safety and efficacy to become established.  This is a judgment call, 
based on your patients’ likely risk and the timing of their likely responsiveness (good and bad) to 
your experimental treatment.  For example, you might want to perform your first interim analysis 
when 50% of your projected sample size should have been treated long enough to display the 
effects of experimental treatment. 
 
The second step is to set the confidence intervals or P-values for your interim analyses at quite 
stringent levels, so that you minimize your risk of wrongly triggering your statistical warning rules.  
For example, in the HOPE trial we used the original Haybittle15-Peto16approach, and set the 
interim warning rule to trigger for benefit at two consecutive differences of 4 standard deviations 
(one-sided P< 0.00003) during the first half of the trial and at 3 standard deviations (one-sided P< 
0.002) in the second half.  As you can see, even with penalties for “multiple looks,” we retained 
plenty of “P” for the final analysis.  If these interim P values strike you as unattainable, reducing 
this “warning rule” exercise to mere window dressing, I’m happy to report that they were, in fact, 
triggered, the PI was unblinded, and the trial was stopped 8 months before its scheduled close.   
 
We set a less rigorous warning trigger for safety at 3 standard deviations (one-sided P< 0.002) in 
the first half of the trial and 2 standard deviations (P < 0.23) in the second half, retaining our 
option of unblinding the investigators much sooner if we observed even a few severe 
unanticipated adverse events (“SUAEs”).     
 
In a similar fashion, you could set statistical limits for determining when a trial is simply not going 
to show any minimallyimportant benefit from experimental therapy.  You can do this by specifying 
a very strict confidence interval around your treatment effect and watching to see whether it 
excludes, on the “ineffective” side, the minimally important benefit.   
 
 
Statistical warning rules, not stopping rules 
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Note that I’ve called them statistical warning rules, not stopping rules.  That’s because trialists like 
me think that decisions to stop a trial should never be based on statistics alone.  Accordingly, the 
third step is to decide what additional information you will use to interpret a statistical warning rule 
when it is triggered.  Typically, this interpretation involves the clinical and biologic sense that 
might support or refute a decision to stop the trial.  For example, in NASCET, we began monthly 
interim analyses 2 years into the trial, and a recommendation to stop the trial early required a 
demonstration of efficacy (an RRR of at least 10% for stroke or death) at 3 standard deviations in 
each of 6 clinically sensible subgroups every month for 6 months.  Despite these stringent rules, 
we stopped the trial among patients with high-degree carotid stenosis early.  More about how 
monitors and monitoring committees ought to work begins on page xxx. 
 
Once you’ve designed your statistical warning rules, their review and acceptance by your 
collaborators and monitor(s) should be completed before you start the trial.  You can start reading 
more about warning/stopping rules in Curtis Meinert’s heavily referenced RCT text17.  
 
 
The final four items on the checklist come into play after you’ve completed your trial and are 
polishing off your analysis. 
 
8. Don’t exaggerate your conclusions.  
 
If you’ve followed our advice so far, you can carry out a valid RCT.  Congratulations!  Don’t blow it 
at the end by exaggerating your conclusions in ways that mislead your audience, leave you open 
to legitimate criticism, and damage your credibility.  The 3 most common exaggerations we 
encounter are reporting only the “sexiest” efficacy measure, looking for the pony, and calling an 
indeterminate trial “negative.” 
 
 
Don’t report only your sexiest measure of efficacy 
 
Ironically, the first exaggeration of reporting only the “sexiest” efficacy measure (typically a 
Relative Risk Reduction (RRR) rather than an Absolute Risk Reduction (ARR) or Number 
Needed to be Treated to prevent one more event (NNT)) is increasingly common in 
cardiovascular trials, a field that is not only justifiably proud of its past accomplishments, but also 
a victim of its past successes.  A steady progression of positive cardiovascular trials has validated 
an ever-expanding combination of effective treatments.  These combinations thus became 
“established effective therapy.”  As a result, the question in today’s cardiovascular trial is some 
form of: “Among patients with unstable angina, does the addition of drug X to established 
effective therapy achieve a further reduction in the risk of myocardial infarction or death?”  In 
operational terms, this becomes a “placebo add-on” trial in which both groups receive established 
effective therapy.  To do it, we add the promising new drug to the regimen of experimental 
patients, and add its placebo to the regimen of control patients.  As you learned back in Section 
3-2-I on physiological statistics, the established effective therapies pull the Control Event Rate 
(CER) toward zero, and even new drugs that generate large Relative Risk Reductions (RRRs) will 
generate only small Absolute Risk Reductions (ARRs) and large Numbers Needed to be Treated 
to prevent one additional event (NNTs).  Thus, in reporting the effect of ramipril on the risk of 
stroke in the HOPE trial, the investigators confined themselves to the impressive Relative Risk 
Reduction (RRR) of 32% for all stroke and 61% for fatal stroke18.  It was after several letters of 
protest19 that they provided a table of Numbers Needed to be Treated (NNTs) for the entire 
HOPE trial, including an NNT of 111 to prevent a stroke and a very impressive NNT of only 8 to 
prevent one of the composite cardiovascular events20.   
 
This is not academic nit picking.  There is increasing evidence that Relative Risk Redeuctions 
(RRRs) create higher opinions about efficacy among both physicians21 and health policy makers22 
than their corresponding Absolute Risk Reductions (ARRs) or Numbers Needed to be Treated to 
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prevent one additional event (NNTs).  Moreover, when Stuart Pocock reviewed 45 trials reported 
in the BMJ, the Lancet, and the New England Journal of Medicine, he concluded:  “Overall, the 
reporting of clinical trials appears to be biased toward an exaggeration of treatment differences.23”  
I strongly support the CONSORT recommendation that trialists report “For each primary and 
secondary outcome, a summary of results for each group, and the estimated effect size and its 
precision.24”  I take this to mean that, regardless of whether trialists focus on Relative or Absolute 
Risk Reductions (RRRs or ARRs), they must provide readers with the Control and Experimental 
Event Rates (CER and EER) that would permit readers to calculate the efficacy measure they 
find most informative.  This is the editorial policy of our “evidence-based” journals.  It is also 
appropriate, when reliable data are at hand, to report at least the Numbers Needed to be Treated 
to prevent one additional event (NNTs) for clinically identifiable low, medium, and high-risk 
subgroups. 
 
 
Don’t go looking for the pony 
 
As you’ve already read, subgroup analysis is a two-edged sword.  In the design phase of the 
RRPCE trial, I went looking for the pony and pushed for subgroup analyses of efficacy based on 
the nature and location of the qualifying TIAs, by age and sex, and by several comorbid 
conditions.  This led to more than a dozen subgroup analyses, with some of them further divided 
by sex.  I therefore must take the blame for our statement, based on one of these subgroup 
analyses, that “Aspirin was of no benefit in reducing stroke or death among women.”  We didn't 
base this erroneous statement merely on an effect that was statistically significant effect in men 
but not in women.  Women were 42% more likely to suffer stroke or death on aspirin, and we 
showed a statistically significant (P<0.003) difference in the relative risk reductions between the 
sexes.  Despite this extremely positive subgroup analysis the first time anyone tested aspirin for 
TIAs, later trials proved our conclusion was wrong.  
 
Looking for the pony has caused countless trialists to emerge from subgroup analyses 
appropriately besmirched, even when (as in the RRPCE trial) they demonstrate a statistically 
significant qualitative interaction.  My advice to fellow trialists: never draw a conclusion (especially 
in print) about efficacy from any subgroup analysis that produces an unanticipated qualitative 
interaction in which a treatment that is effective in one subgroup of patients is either harmful or 
powerfully useless in another.  I suggest that the only appropriate response to such a finding is 
replication (in an independent study), not publication.  If you’re not convinced by this tough 
stance, revisit our aspirin vs. perioperative stroke and death experience described in Check list 
item 2-vi on forming hypotheses for your next trial.  
 
When that admonition is ignored, Andrew Oxman and Gordon Guyatt have warned the readers of 
RCT reports not to accept conclusions based on subgroup analyses unless they are big, highly 
statistically significant, specified prior to analysis, replicated in other independent trials, and 
supported by other evidence25. 
 
 
 
Never, ever label an indeterminate trial “negative” or as showing “no difference” 
  
The third exaggeration is reporting an “indeterminate” trial as “negative;” that is, reporting that an 
intervention has “no effect” just because the 95% Confidence Intervals (Cis) for its Relative Risk 
Reduction (RRR) and Absolute Risk Reduction (ARR) cross 1 and 0, respectively.  I’ve already 
described this problem in Figure 3-09-3, but it deserves repeating.  This problem is as old as 
RCTs, and 25 years ago Jenny Freiman, Tom Chalmers, Harry Smith, and RR Kuebler examined 
71 “negative” trials and found that 94% of them had a greater than 10% risk (power less than 0.9) 
of missing an RRR of 25% (the sort of effect observed among many efficacious treatments)26.  
Alas, 16 years later David Moher and his colleagues documented that this problem had not gone 
away27.  As described above, whether in a planned “debunking” trial of a treatment thought to be 
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useless, or as an unexpected result of a superiority trial, the issue is not the (nonsignificant) 
difference that you found, but the difference, of significance to patients, that you can rule-out.   
 
Allan Detsky and I have suggested that there are two appropriate ways to evaluate apparently 
“negative” trials28.  Both of them reject a priori sample size requirements and focus on results 
(“how many patients you needed depends on what you found”).  First, we suggest that you simply 
generate a Confidence Interval around the effect that you did observe and see whether it 
excludes any minimally important effect (as in Column 1 of Figure 3-09-3).  Second, we suggest 
an alternative in which you test your observed difference against the effect you hypothesized 
before the trial.  Even if you rule out any minimallyimportant effect, I still advise against labeling 
your result “negative” because you may not have ruled out the effect somebody else considers 
worthwhile.  For this reason, I have expanded Iain Chalmers’ earlier proposal to ban the term 
“negative trial”29 and have taken the position that the word “negative” should be banned in 
describing any result from any study30.  I suggest that far more accurate and useful words are 
“inconclusive” or, if that is too bitter a pill to swallow in print, “indeterminate.” 
 
 
9. Report your results, regardless of their interpretation 
 
Not to report trial results, regardless of what they show (or, especially, fail to show), is both bad 
science and bad ethics.  Every trial result should be included in systematic reviews of that 
intervention, and avoiding publication bias (especially of trials with indeterminate results) is vital to 
their validity.  Moreover, it is unethical to expose study patients to an RCT environment, with the 
expectation that they are contributing to medical science, and then suppress their outcomes.   
 
In 1997, in recognition of the resistance to submitting and publishing “negative” trials, over 100 
editors of medical journals declared an “amnesty for unpublished trials” and provided a free 
registration service for unpublished trials31.  If you or the journals decide that your trial isn’t fit to 
print, be sure to register it with the Medical Editors.  I think this registration should extend even to 
fraudulent or “busted” trials in which adherence to the protocol was so awful that they had to be 
abandoned.  Another means of reporting such trials is through “open access” internet-based 
publishers such as Biomed Central (http://www.biomedcentral.com). 
 
 
10. Update the systematic review that justified your trial: 
 
Your work won’t be done until you incorporate your trial results (plus any other contemporaneous 
ones) in an updated systematic review of your intervention.  Has your trial provided the necessary 
confirmation of efficacy or a useful narrowing of the confidence interval around the estimate of 
effectiveness?  Besides contributing to the science of health care, there are three more personal 
benefits of updating the systematic review.  First, if your trial results were indeterminate, they will 
nonetheless be incorporated into a systematic review, meeting your scientific and ethical 
obligations.  Second, the updated systematic review contributes another publication to your CV.  
Finally, it tells you where to go next.  Alas, as I wrote this chapter, Michael Clarke, Philip Alderson 
and Iain Chalmers reported that only 3 of 33 RCT reports published in May 2001 in the 5 major 
general medical journals even referred to relevant systematic reviews, and none of them 
presented any systematic attempt to “set the new results in the context of previous trials.32” 
 
 
11. Formulate the logical question for your next trial: 
 
With the possible exception of “debunking” trials that expose the uselessness of established 
treatments, the interpretation of an RCT result ought to lead to the formulation of the next logical 
question you should ask in your next RCT.  Might an effective treatment for your study patients 
also benefit patients with a different but related disorder?  Is the unexpected response of some 
subgroup of patients that you discovered while data-dredging of such potential importance that 



Page 16 of 18 

you should test it in your next trial?  Might a simpler, cheaper, or more easily tolerated regimen be 
non-inferior to the one you’ve just validated as efficacious?  In addition to formulating the next 
logical question, you should incorporate everything you learned in designing, conducting and 
analyzing this trial into the design, conduct, and analysis of your next trial.   
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