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Abstract

Background

In 2013, Zika virus (ZIKV) emerged in French Polynesia and spread through the Pacific
region between 2013 and 2017. Several potential Aedes mosquitoes may have contributed
to the ZIKV transmission including Aedes aegypti, the main arbovirus vector in the region,
and Aedes polynesiensis, vector of lymphatic filariasis and secondary vector of dengue
virus. The aim of this study was to analyze the ability of these two Pacific vectors to transmit
ZIKV at a regional scale, through the evaluation and comparison of the vector competence
of wild Ae. aegyptiand Ae. polynesiensis populations from different Pacific islands for a
ZIKV strain which circulated in this region during the 2013-2017 outbreak.

Methodology/principal findings

Field Ae. aegypti (three populations) and Ae. polynesiensis (two populations) from the Pacific
region were collected for this study. Female mosquitoes were orally exposed to ZIKV (107
TCID50/mL) isolated in the region in 2014. At 6, 9, 14 and 21 days post-infection, mosquito
bodies (thorax and abdomen), heads and saliva were analyzed to measure infection, dissem-
ination, transmission rates and transmission efficiency, respectively. According to our results,
ZIKV infection rates were heterogeneous between the Ae. aegypti populations, but the dis-
semination rates were moderate and more homogenous between these populations. For Ae.
polynesiensis, infection rates were less heterogeneous between the two populations tested.
The transmission rate and efficiency results revealed a low vector competence for ZIKV of
the different Aedes vector populations under study.

Conclusion/significance

Our results indicated a low ZIKV transmission by Ae. aegyptiand Ae. polynesiensis tested
from the Pacific region. These results were unexpected and suggest the importance of other
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study design, data collection and analysis, decision  factors especially the vector density, the mosquito lifespan or the large immunologically
1o publish, or preparation of the manuscript. naive fraction of the population that may have contributed to the rapid spread of the ZIKV in
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Author summary

Zika virus (ZIKV) was isolated for the first time in Uganda in 1947. The virus was sporadi-
cally detected in Africa and Asia during few decades. The first human outbreak was
declared in Yap Island in Micronesia in 2007. The virus reemerged in 2013 in French
Polynesia and circulated throughout the Pacific region and in Americas between 2013 and
2017. ZIKV is transmitted to human by the bite of an infected mosquito. Aedes mosqui-
toes were particularly incriminated in the ZIKV outbreak. In this study, we showed for
the first time the results of vector competence study of wild Aedes aegypti and Aedes poly-
nesiensis from different islands of the Pacific region. Our results demonstrated an unex-
pected homogenous and low ZIKV vector competence for the different populations of
these two vectors. These findings seemed to indicate that other factors have contributed to
the rapid spread of ZIKV in the Pacific region.

Introduction

Zika fever is an emerging vector borne disease caused by a single stranded RNA virus, Zika
virus (ZIKV) belonging to the genus Flavivirus [1]. ZIKV is transmitted to humans by the bite
of infected vectors mainly Aedes mosquitoes [2—4]. Since its first isolation in Uganda in 1947,
ZIKV has been detected occasionally in Africa and Asia [5]. The first human outbreak was
declared in Yap state in Federated States of Micronesia in 2007 [4]. ZIKV reemerged in the
Pacific region in 2013 in French Polynesia and then spread across the region and to the Ameri-
cas between 2014 and 2016 [5-9]. This recent outbreak was associated with neurological disor-
ders as Guillain-Barré syndrome [10-12], myasthenia gravis [13] and microcephaly [14, 15]
were reported in the Pacific region and in South and Central America including the Caribbean
(http://www.paho.org). Phylogenetic studies indicated that ZIKV is divided into two lineages:
African and Asian with less than 12% of genetic divergence [16, 17]. The 2013-2016 outbreak
was due to the emergence of ZIKV belonging to Asian lineage, and genetic analysis revealed
divergence between the Pacific and the American clades [18, 19].

During the 2013 French Polynesian ZIKV outbreak, more than 8,700 suspected cases and
30,000 medical consultations were reported by the sentinel surveillance network [10]. A recent
seroprevalence study estimated that more than half of the population was infected by ZIKV dur-
ing the outbreak in this territory [20]. From French Polynesia, the disease spread to New Cale-
donia in 2013 [7, 21] affecting the whole territory. Based on the number and proportion of
confirmed cases and the proportion of ZIKV infections among arboviral syndromes recorded
in the population, New Caledonia Health Authorities estimated the number of cases at about
11,000 [11]. From 2014 to 2017, ZIKV was detected in the Cook Islands, Vanuatu, Fiji, Samoa,
Salomon Islands, Tonga and American Samoan (http://www.spc.int/phd/epidemics/) [14, 22].

In the Pacific landscape, different mosquito species are present and some of them are known
as potential arbovirus vectors, especially mosquitoes from Aedes genus. Ae. aegyptiis present in
most Pacific islands with few exceptions [23]. The presence of Ae. albopictus is confirmed in 5
out of 17 countries and territories of this region and its expansion through the Western Pacific
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islands is observed right up to Fiji and Tonga islands [24, 25]. Ae. polynesiensis distribution is
reported in the Eastern part of the Pacific, from French Polynesia to Fiji [22]. In addition, the
presence of other vectors is recorded in some local parts of the Pacific region as Aedes hensilli,
Aedes scutellaris and other Aedes species belonging to the scutellaris group ([26-28].

Previous studies evaluated the vector competence of Aedes vectors for ZIKV belonging to
both lineages. Mosquitoes from Africa [29], Asia [30, 31] and America [32, 33] were infected
by ZIKV strains belonging to the African lineage and showed various results. The vector com-
petence for ZIKV belonging to the Asian lineage was also evaluated with vectors from America
[2, 34] Australia [35] and Europe [36]. However, the ability of the vectors from the Pacific to
transmit ZIKV has been poorly studied. Ae. hensilli from Yap island, appeared to be able to dis-
seminate African ZIKV strain but the transmission has not been evaluated. However this mos-
quito was the most collected species in Yap island, Federated States of Micronesia, during the
ZIKV outbreak in 2007 (41%) supporting its possible role as a vector during the outbreak [27].
Laboratory strains of Ae. aegypti and Ae. polynesiensis from French Polynesia were shown to
be able to get infected and disseminate an Asian/Pacific ZIKV strain isolated in French Polyne-
sia in 2013. Furthermore, infectious ZIKV particles have been found in saliva of Ae. aegypti
from French Polynesia as soon as 6 days post-infection [37].

The Pacific landscape promotes specific environmental conditions that have influenced the
genetic of the main arboviruses vector Ae. aegypti [22, 38]. The arbovirus transmission
depends on the specific combination of mosquito and virus genotypes [39-41]. At a regional
scale, this specific interaction has already been studied for dengue virus and highlighted signif-
icant transmission differences between New Caledonian and Polynesian Ae. aegypti [42]. To
our knowledge, no studies have compared the vector competence of several field Aedes species
from the Pacific region with an Asian/Pacific ZIKV strain that circulated in this region. As the
Pacific was at the origin of the ZIKV pandemic, there is a real interest in investigating the
interactions between arbovirus and Pacific vectors at a regional scale.

For this purpose, we collected three field populations of Ae. aegypti in New Caledonia
(West Pacific), Samoa (Center) and French Polynesia (East) in order to evaluate and compare
the vector competence of several populations of the main Pacific vector. Additionally, we col-
lected two field populations of Ae. polynesiensis in Wallis (from the Territory of Wallis and
Futuna Islands) (Center) and Tahiti (French Polynesia) (East) to evaluate the vector compe-
tence of this potential regional vector and to compare the results obtained for these two Aedes
vectors. We performed these vector competence studies with the ZIKV Pacific strain which
circulated in New Caledonia in 2014 and belongs to the Asian/Pacific clade.

Materials and methods
Mosquito collections

Mosquitoes were sampled in five sites in the Pacific region in 2016 with permission of the resi-
dents and they were shipped to the Laboratory of Arboviruses and Insect Vectors (AIV) at the
Institut Pasteur, Paris (Table 1 and Fig 1). The adults were maintained at 28°C and 80% of
humidity with a 16:8h light:dark cycle and fed with a 10% sucrose solution ad libitum. Females
were blood-fed several times to obtain the F1-F3 generation of mosquitoes used for infection
assays.

Viral strain

The viral strain used in this study was a ZIKV isolated from a patient’ serum in New Caledonia
in April 2014 (NC-2014-5132) (GenBank SRR5309451) (Collection of the Institut Pasteur de
Nouvelle-Calédonie). Viral stocks were prepared after five passages on African green monkey
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Table 1. Aedes aegyptiand Aedes polynesiensis populations sampled in the Pacific region, 2016. When available, data regarding the number of individuals sampled are
provided in brackets.

Sample name Country Species Sampled stage Generation used in laboratory experiments
Aae-French Polynesia French Polynesia Ae. aegypti Larvae / Pupae (<300) F,
Aae-New Caledonia New Caledonia Ae. aegypti Larvae / Pupae (<200) F,
Aae-Samoa Samoa Ae. aegypti Egg F;
Apo-French Polynesia French Polynesia Ae. polynesiensis Larvae / Pupae (<300) F,
Apo-Wallis Wallis and Futuna Ae. polynesiensis Adult (160-180 females) F;

https://doi.org/10.1371/journal.pntd.0006637.t001

kidney cells (Vero E6, ATCC cell lines) maintained in DMEM medium (Gibco) supplemented
with 10% fetal bovine serum (FBS) (Gibco). Supernatant were collected after 7 days of incuba-
tion at 37°C. The titration of the viral stock was performed by serial 10-fold dilutions on Vero

cells and expressed in TCIDs,/mL.

Mosquito oral infections

For each mosquito population, 4-5 boxes of 60 five to seven day-old females, not previously
blood-fed, were starved for 24 hours before infection. They were allowed to take an infectious
blood meal, through a capsule (Hemotek system) covered by a pig intestine (obtained from a
commercial purchased pig intestine) as membrane and containing 2 ml of washed rabbit
erythrocytes obtained directly from a rabbit (New Zeland white Rabbit, Charles River) and 1
ml of viral suspension supplemented with adenosine triphosphate at 5 mM. The ZIKV concen-
tration in the blood meal was 10" TCIDso/mL. After the blood meal, fully engorged females
were transferred into new containers and maintained at 28°C and 80% of humidity under a
12:12h light-dark cycle with free access to a 10% sucrose solution.
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Fig 1. Pacific map locating Ae. aegypti and Ae. polynesiensis sampling sites. Ae. aegypti sampling sites are represented by the red
stars and Ae. polynesiensis sampling sites by the dark star in a white dot. This map was generated using map files provided by ESRI in
its ArcMap package.

https://doi.org/10.1371/journal.pntd.0006637.9001
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Infection, dissemination and transmission analysis

For each population tested, more than 20 females were analyzed at 6, 9, 14, 21 days post-infec-
tion (dpi) and scored infected or non-infected. For each mosquito, abdomen and thorax were
analyzed to determine the infection, the head was used for the dissemination and the saliva was
tested for the transmission. For all Aedes population tested, transmission efficiencies were
obtained by the number of infected saliva divided by the total number of mosquitoes tested for
each population at each dpi as previously described [42, 43]. For each saliva collection, females
were cold anesthetized before removing their legs and wings. The proboscis was inserted into a
filter tip ART (Molecular BioProducts) containing 5 pl of FBS for salivation during 20 minutes.
The body and the head were individually ground in 250 uL of DMEM medium supplemented
with 2% FBS. Lysis was carried out during 30 sec at 6,000 rpm and the samples were centrifuged
at 10,000g during 10 min at 4°C. The supernatants were stored at -80°C before analysis. For the
viral detection, ground samples serially diluted were inoculated onto Vero E6 cells in 96-well
plates, incubated at 37°C during 7 days and stained with a solution of crystal violet (0.2% in

10% formaldehyde and 20% ethanol). Presence of viral particles was determined by the presence
of cytopathic effect (CPE). The saliva samples were stored at -80°C. For detection and titration
of ZIKV, saliva samples were inoculated onto Vero E6 cells in 6-wells plates under an agarose
overlay and incubated at 37°C during 7 days. Presence of infectious particles was assessed by
the detection of plaque and titers were expressed as pfu (plaque-forming unit)/saliva.

Statistical analysis

All rates were statistically compared using Fisher’s exact test (R v. 3.3.1) [44], considering p-
values > 0.05 non-significant.

Ethics statement
This study follows the New Caledonia Animal Ethics Guidelines.

Results

Different populations of Aedes aegypti from the Pacific show similar ZIKV
transmission profiles

The ZIKV infection rates of the French Polynesian and the New Caledonian populations of
Ae. aegypti appeared to be moderate to high (> 53%) (S1 Table and Fig 2A). Significant differ-
ences were found between these two mosquito populations at 6 dpi (French Polynesia 53%
and New Caledonia 87%, p = 0.009) and 9 dpi (French Polynesia 93% and New Caledonia
73%, p = 0.04). The ZIKV infection rate was significantly lower for the Samoan Ae. aegypti
during all the course of infection (with a minimal value of 23% at 9 dpi and a maximal value of
50% at 14 dpi).

The dissemination rates were comparable between the three Ae. aegypti populations,
although the population of Samoa started to be infected only from 14 dpi (S1 Table and Fig
2B). The dissemination rates of Ae. aegypti increased during all the course of infection and
reached moderate to high levels at 21 dpi (between 53% and 78%).

Infectious viral particles were found in the saliva from 9 dpi for Ae. aegypti from New Cale-
donia. The transmission rates for the three populations tested were low and homogenous
(< 30% at 21 dpi) (S1 Table and Fig 2C). The transmission efficiencies of these populations
were low, from 3% for the Caledonian population (at 9 dpi) to 6% for the Samoan population
and 17% for the French Polynesian one (at 21 dpi), and no significant difference was found (S1
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Fig 2. Aedes aegypti from the Pacific region infected with ZIKV. (A) Infection rate, (B) dissemination rate, (C) transmission rate and (D)
transmission efficiency at 6, 9, 14 and 21 days post-infection (dpi). Error bars represent 95% confidence intervals. Numbers of mosquitoes tested
are indicated above each bar plot. Significant differences are indicated by asterisks (*p < 0.05; **p < 0.01; *** p < 0.001). NT indicates that females
were not tested for this analysis point.
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Table and Fig 2D). However, the extrinsic incubation period seemed shorter for the Caledo-
nian mosquitoes (9 dpi) compared to the two other populations (> 9 dpi).

Low and homogenous transmission of ZIKV for Aedes polynesiensisfrom
the Pacific region

The ZIKV infection rates appeared to be high and homogenous from 9 dpi for both the Walli-
sian and French Polynesian populations of Ae. polynesiensis (S2 Table and Fig 3A). At 6 dpi,
ZIKV infection rate of the Wallisian vector was higher than that of the Polynesian population
(84% vs 23%, p < 0.001).

The ZIKV dissemination rates increased gradually in both vector populations (S2 Table
and Fig 3) with no significant difference, except at 21 dpi (p = 0.0135). Although the infection
rates were high, dissemination rates were moderate, even at 21 dpi.

Infectious particles in the saliva were found from 14 dpi. Transmission rates were low for the
two Ae. polynesiensis populations (< 10% at 21 dpi) (S2 Table and Fig 3C). As for Ae. aegypti
populations from the Pacific region, the ZIKV transmission efficiency values for Ae. polynesien-
sis were low, 2% and 3% (from 14 dpi) for the studied populations (S2 Table and Fig 3D).

Finally, when comparing both results obtained for each population of Ae. aegypti and Ae.
polynesiensis, we observed significant differences between the population of Ae. aegypti from
Samoa and both Ae. polynesiensis populations after 9 dpi for ZIKV infection. Concerning the
ZIKV dissemination, few significant differences were observed for the last analysis point (21
dpi) between Ae. aegypti from New Caledonia and Ae. polynesiensis from Wallis (p = 0.044)
and between Ae. aegypti and Ae. polynesiensis from French Polynesia (p = 0.041). However, no
significant difference was found between the two mosquito species for ZIKV transmission.
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Discussion

Recently, the tropical islands, especially of the Pacific region, have been incriminated as new
hubs for arboviruses emergence [45]. Indeed the ZIKV outbreak in 2013 emerged in French
Polynesia and subsequently spread through the Pacific region and to Latin America [5, 6, 19].
In this context, the evaluation of Aedes vector competence for the arboviruses that circulated
in this region appeared to be pivotal. Recent studies estimated the vector competence of the
Pacific vectors for different arboviruses at the island scale for dengue virus in New Caledonia
and French Polynesia [42], for chikungunya virus in New Caledonia, French Polynesia, and
Yap island [27, 46, 47] and for ZIKV in Yap island and French Polynesia [27, 37].

The quick spread of ZIKV in the Pacific region subsequently to the French Polynesian out-
break highlighted the necessity to evaluate the ZIKV vector competence at the regional scale.
This study is the first to describe and compare the ZIKV vector competence of Ae. aegypti and
Ae. polynesiensis populations from different Pacific islands for a ZIKV strain which circulated
in the region during the 2013-2015 outbreaks.

Our results confirmed that Ae. aegypti populations from New Caledonia, Samoa and French
Polynesia can transmit ZIKV but with low transmission efficiencies (< 17% until 21 dpi). In
addition, even if the infection rates seemed to indicate a better infection of the New Caledonian
and the French Polynesian Ae. aegypti populations, the transmission efficiency was similar for
all populations tested according to our tests. Similar results were obtained in the present study
for Ae. polynesiensis with infectious viral particles found in the two populations tested, thus
demonstrating the potential role of this mosquito species in transmitting ZIKV (< 3% until 21
dpi). For Ae. aegypti, the infection rates seemed to indicate heterogeneous profiles, this profile
was more homogeneous for Ae. polynesiensis. The Samoan population of Ae. aegypti and the
French Polynesian population of Ae. polynesiensis seemed to be less susceptible to the infection
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than the populations from the other study sites. A previous study performed in French Polyne-
sia with Ae. aegypti showed higher ZIKV transmission rates (3, 8, 36 and 73% at 6, 9, 14 and 21
dpi) [37]. Such discrepancies may be explained by differences in the experimental protocol: the
previous competence work was performed using F16 to F18 generation mosquitoes; moreover,
the detection of infectious particles in mosquito saliva was performed on C6/36 instead of Vero
cells. The fact that previous experiments were conducted using the French Polynesian instead of
New Caledonian ZIKV strain may also be another possible explanation to such dissimilarity,
but in both studies the vector competency for ZIKV was confirmed. In contrast to DENV that
was previously found as highly disseminating in the New Caledonian and French Polynesian
Ae. aegypti, the dissemination rates for ZIKV indicated limited escape from the midgut barrier
[42]. Finally, Australian Ae. aegypti has been recently tested for ZIKV transmission [35]. The
results showed high prevalence of virus in the saliva. However, the ZIKV strains used although
belonging to the Asian lineage was isolated in Cambodia in 2010 (before ZIKV outbreak) thus
not harboring the specific amino acids substitution of the Asian American or Pacific sublineage
[18, 19]. Differences in the susceptibilities to ZIKV depending on the mosquito species and pop-
ulation, suggest that the outcome of mosquito infection may vary depending on virus-mosquito
pairing described as genotype-by-genotype interaction [48]. Moreover, the efficiency of ZIKV
in overcoming the midgut infection and escape barrier may be influenced by several factors,
notably the microbiome [49, 50] and innate immunity [51, 52] which could be both related to
the breeding site environment [53, 54]. The role of the salivary glands as a barrier seemed to be
observed for all the populations tested.

Since the explosive ZIKV outbreaks, the vector competence of several mosquito species and
populations for this virus has been tested. Previous results highlighted some heterogeneity in
the ZIKV transmission, especially due to the ZIKV lineage [55]. In this study, the aim of the
experiments was to test the vector competence of Pacific mosquitoes for the ZIKV which cir-
culated during the outbreak (Asian/Pacific lineage). Our results corroborate previous findings
that mosquito vectors, whatever the area they originate from (Pacific, America, Europe), are
mostly poorly competent for the Asian/Pacific sublineage of ZIKV [2, 36, 37]. We did not have
the opportunity here to test Ae. albopictus from the Pacific region. Although, Ae. albopictus
could be relevant to Public Health as a potential invasive species in the region, it might not
have sustained an outbreak by its own as it is not present in New Caledonia and French Poly-
nesia [22] and as it appears to be a poor ZIKV vector in other region [55]. All together, these
observations support that the emergence of ZIKV in the Pacific region and other regions, did
not solely rely on the competence of the vectors to transmit this virus. Several other factors,
notably the vector density, the mosquito lifespan and non-entomological parameters like the
large immunologically naive fractions of the population may have contributed to the unex-
pected globalization of ZIKV. This work highlights the necessity to characterize the interaction
between mosquitoes, arboviruses and humans in the areas recently affected in order to better
assess the risk for such arboviruses to emerge and to limit the burden of future outbreaks.
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