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A B S T R A C T

Zika virus (ZIKV) infection is a serious public health concern due to its ability to induce neurological defects and
its potential for rapid transmission at a global scale. However, no vaccine is currently available to prevent ZIKV
infection. Here, we report the development of a yeast-derived subunit protein vaccine for ZIKV. The envelope
protein domain III (EDIII) of ZIKV was produced as a secretory protein in the yeast Pichia pastoris. The yeast-
derived EDIII could inhibit ZIKV infection in vitro in a dose-dependent manner, suggesting that it had acquired
an appropriate conformation to bind to cellular receptors of ZIKV. Immunization with recombinant EDIII protein
effectively induced antigen-specific binding antibodies and cellular immune responses. The resulting anti-EDIII
sera could efficiently neutralize ZIKV representative strains from both Asian and African lineages. Passive
transfer with the anti-EDIII neutralizing sera could confer protection against lethal ZIKV challenge in mice.
Importantly, we found that purified anti-EDIII antibodies did not cross-react with closely related dengue virus
(DENV) and therefore did not enhance DENV infection. Collectively, our results demonstrate that yeast-produced
EDIII is a safe and effective ZIKV vaccine candidate.

1. Introduction

Infection with Zika virus (ZIKV), an arthropod-borne virus, not only
induces mild symptoms including rash, arthritis, and conjunctivitis
(Dick, 1952; Duffy et al., 2009; Lanciotti et al., 2008), but also may lead
to neurological and autoimmune complications such as Guillain-Barre
syndrome and microcephaly (Cao-Lormeau et al., 2016; Loos et al.,
2014; Rasmussen et al., 2016). Large outbreaks of ZIKV infection have
occurred since 2007 (Bogoch et al., 2016; Cao-Lormeau et al., 2014;
Duffy et al., 2009; Lanciotti et al., 2008; Loos et al., 2014). In particular,
the ZIKV outbreak in Brazil has caused estimated 440,000 to 1,300,000
infections, and was declared as a Public Health Emergency of Interna-
tional Concern by the World Health Organization (WHO) in February
2016 (Gulland, 2016). Thus, ZIKV infection has become a serious global
public health concern. However, no approved vaccines are currently
available for preventing ZIKV infections.

ZIKV belongs to the Flavivirus genus of the Flaviviridae family and is
closely related to yellow fever virus, dengue virus (DENV), West Nile
virus (WNV) and Japanese encephalitis virus (Gould and Solomon,
2008). Its genome is a single-stranded, positive-sense RNA of approxi-
mately 11 kb, encoding a single polyprotein that can be processed by
proteases from host and the virus to produce three structural proteins
(C, prM/M, and E) and seven non-structural proteins (NS1, NS2A,
NS2B, NS3, NS4A, NS4B, and NS5) (Kuno and Chang, 2007). High-re-
solution structures of ZIKV mature virions reveal that the viral envelope
consists of 180 E protein copies arranged in icosahedral symmetry (Dai
et al., 2016; Kostyuchenko et al., 2016; Sirohi et al., 2016; Zhao et al.,
2016). The E protein is responsible for virus attachment, entry, and
fusion. It contains a transmembrane domain and an ectodomain (also
termed E80) which can be divided into domain I (EDI), domain II
(EDII), and domain III (EDIII). The distal end of EDII contains the fusion
loop that mediates membrane fusion after pH-dependent
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conformational changes. EDIII consists of approximately 100 amino
acids and is considered as the receptor binding site (Dai et al., 2016;
Kostyuchenko et al., 2016; Zhao et al., 2016). Recent studies show that
EDIII displays epitopes recognized by ZIKV–neutralizing monoclonal
antibodies (Robbiani et al., 2017; Sapparapu et al., 2016; Stettler et al.,
2016; Wang et al., 2016; Zhao et al., 2016).

Many approaches have been tested for the development of safe and
effective ZIKV vaccines, yielding some exciting results in pre-clinical
studies (Das Neves Almeida et al., 2018; Durbin and Wilder-Smith,
2017; Fernandez and Diamond, 2017; Ghaffar et al., 2018; Lin et al.,
2018). For instance, a DNA vaccine encoding ZIKV PrM-E proteins was
found to provide protection against viremia in mice and non-human
primates (Dowd et al., 2016). Larocca et al. reported that an inactivated
virus vaccine also protected mice and rhesus monkeys from ZIKV
challenge by inducing E protein-specific neutralizing antibodies
(Abbink et al., 2016; Larocca et al., 2016), highlighting the critical role
of neutralizing antibodies targeting the envelope protein and pre-
venting ZIKV infection. Shan et al. reported that a live attenuated ZIKV
vaccine candidate could induce sterilizing immunity in mouse models
(Shan et al., 2017). It was also found that mRNA vaccines encoding
ZIKV prM and E genes elicited protective immune responses in mice
(Richner et al., 2017) and in non-human primates (Pardi et al., 2017).
Based on the encouraging preclinical results, a number of ZIKV vaccine
candidates derived from the above mentioned vaccine platforms, in-
cluding DNA vaccine, mRNA vaccine, inactivated whole virus vaccine,
and live attenuated vaccine, have progressed into clinical trials (re-
viewed in (Das Neves Almeida et al., 2018; Garg et al., 2018; Ghaffar
et al., 2018)). Preliminary reports of a phase I trial showed that a
consensus DNA vaccine (GLS-5700) was safe and capable of inducing
protective antibodies (Tebas et al., 2017). Similarly, a DNA vaccine
(VRC5283) was found to be well-tolerated and immunogenic in phase I
trials (Gaudinski et al., 2018). Results from phase I trials with a purified
formalin-inactivated ZIKV vaccine showed that the vaccine was well-
tolerated and could elicit robust neutralizing antibody titers in healthy
adults (Modjarrad et al., 2018).

One of the unique challenges in developing a ZIKV vaccine is a
potential immune enhancement of heterologous DENV infection
(Fernandez and Diamond, 2017). As ZIKV and DENV are closely re-
lated, their infections produce cross-reactive antibodies which may lead
to antibody-dependent enhancement (ADE) of heterologous infections,
a phenomenon well-documented in different DENV serotypes (Halstead
et al., 2010). In fact, it has been reported that anti-ZIKV antibodies
could enhance DENV infection in cell cultures (Kawiecki and
Christofferson, 2016) and in mouse models (Stettler et al., 2016). Anti-
ZIKV antibodies able to enhance DENV infection target mainly the EDI
and EDII domains (Stettler et al., 2016). In the case of DENV, antibodies
targeting the prM protein have also been shown to facilitate ADE
(Dejnirattisai et al., 2010; Rodenhuis-Zybert et al., 2010). So far, all the
ZIKV vaccine candidates entering clinical trials contain or express full-
length prM and E proteins, and therefore bear the risk of enhancing
DENV infection. Thus, it is important to continue the search for a safe
and effective ZIKV vaccine.

Recently, our group demonstrated that recombinant ZIKV EDIII
protein derived from Drosophila S2 cells could robustly elicit neu-
tralizing antibodies capable of protecting mice against lethal ZIKV in-
fection (Qu et al., 2018). In the present study, we evaluated whether
functional ZIKV EDIII could be produced as a vaccine candidate in
yeast, an economic and adaptable recombinant expression system
widely used in the vaccine industry. Moreover, we examined whether
ZIKV EDIII-immunized mice could produce DENV infection-enhancing
antibodies.

2. Materials and methods

2.1. Cells and viruses

Vero E6 cells were grown as described previously (Liu et al., 2011).
K562 cells were purchased from the Cell Bank of Chinese Academy of
Sciences (www.cellbank.org.cn). ZIKV strain SZ-WIV01 (GenBank ac-
cession number: KU963796)has been described in a previous study (Qu
et al., 2018). ZIKV strains MR766 and PRVABC59 were obtained from
the American Type Culture Collection (ATCC, USA). ZIKV strain NC-
2014-5132 has been described previously (Dupont-Rouzeyrol et al.,
2017). All ZIKV strains were propagated in Vero cells supplemented
with Dulbecco's modified Eagle medium (DMEM) and 2% fetal bovine
serum (FBS). DENV serotype 2 strain New Guinea C ((DENV2/NGC) has
been described previously (Zou et al., 2011). Virus stocks were titrated
by performing plague assays as previously described (Qu et al., 2018).

2.2. Antibodies

Anti-6×His tag mouse monoclonal antibody was purchased from
GenScript (Nanjing, China). Alkaline phosphatase (AP)-conjugated
secondary antibodies were purchased from Promega (Madison, WI,
USA). Anti-ZIKV-E80 rabbit polyclonal antibody was generated in
house by immunizing rabbit with insect cell-produced ZIKV E80 protein
(Qu et al., 2018).

2.3. Synthetic peptides

A set of 20 peptides spanning entire amino acid sequence of EDIII
(amino acid 297 to 406) of ZIKV/Z1106033 strain (GenBank accession
number: KU312312) were synthesized by GL Biochem (Shanghai,
China). Each peptide was made up of 15 residues, of which 12 over-
lapped with the adjacent peptides.

2.4. Vector construction and yeast transformation

The nucleotide coding sequence for EDIII (amino acid 297 to 406) of
ZIKV strain Z1106033 was codon optimized, synthesized, and cloned
into the backbone vector pPinkα-HC (Invitrogen, USA), yielding the
plasmid pPinkα-HC-ZIKV-EDIII.

Yeast transformation was carried out as described previously (Zhang
et al., 2015). Briefly, plasmids were linearized by EcoNⅠ digestion and
then electroporated into a P. pastoris, PichiaPink™ Strain 1 (Invitrogen),
by electroporation. The resulting transformed yeast clones were
screened for EDIII expression by western blotting as described below.

2.5. SDS-PAGE and Western blot assay

Protein samples were mixed with 5× SDS sample buffer, boiled,
and separated by 15% PAGE. For visualization, SDS-PAGE gels were
stained with Coomassie brilliant blue G-250. For western blotting,
proteins were transferred to a PVDF membrane. The membrane was
probed with either anti-6×His tag mouse monoclonal antibody
(1:5000 dilution) or rabbit anti-ZIKV-E80 polyclonal antibody (1:1000
dilution), followed by incubation with corresponding alkaline phos-
phatase (AP)-conjugated secondary antibodies.

2.6. Expression and purification of recombinant EDIII protein

To prepare recombinant ZIKV-EDIII, pPinkα-HC-ZIKV-EDIII-trans-
formed yeast strain was grown in 200ml BMGY medium with shaking
at 30 °C for 24 h. The yeast cells were collected by centrifugation and
were supplemented with BMMY medium containing 1% methanol for
48 h at 30 °C. The medium supernatant was harvested and then con-
centrated by ultrafiltration using an Amicon Ultra-3 Centrifugal Filter
(Millipore, Germany). The resulting sample was added to 100ml
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binding buffer (0.5M NaCl, 20mM Tris, 10mM imidazole, pH 7.9) and
then subjected to affinity purification using Ni-nitrilotriacetic acid
(NTA) resins (Millipore). Purified EDIII protein was quantified by
Bradford assay with bovine serum albumin (BSA) as the reference
standard.

2.7. ZIKV infection-inhibition assay

Vero cells cultured in DMEM medium plus 2% FBS were seeded
(1× 105 cells/well) in a 24-well plate and then grown for 24 h. Serially
diluted EDIII or BSA was mixed with 100 PFU of ZIKV. The mixtures
were added then to the pre-seeded Vero cells. After incubation for 1 h at
37 °C, the protein-virus mixtures were removed and overlay medium
(DMEM, 2% FBS, 0.2% low-melting-point agarose) was added to the
wells. After 72 h, cultured cells were fixed and stained with 1% crystal
violet for plaque visualization.

2.8. Ethics statement

All the animal experiments in this study were approved by the
Institutional Animal Care and Use Committee at the Institut Pasteur of
Shanghai. Animals were cared for in accordance with institutional
guidelines.

2.9. Animal immunization

Prior to immunization, EDIII recombinant protein was formulated
with the Alhydrogel adjuvant (Invivogen, USA). Each vaccine dose
contained 10 μg of EDIII and 500 μg of aluminum hydroxide. PBS buffer
mixed with 500 μg of aluminum hydroxide was prepared as a negative
control. Two groups of six female BALB/c mice (6 weeks old, purchased
from Shanghai Laboratory Animal Center, Shanghai, China) were in-
jected intraperitoneally (i.p.) with the EDIII vaccine and the adjuvant
control, respectively, at weeks 0, 2, and 4. Blood samples were collected
at weeks 4 and 6 for antibody measurement.

2.10. Serum antibody measurement

For antibody measurement, 96-well microtiter plates were coated
with 50 ng of purified EDIII for 2 h at 37 °C. The wells were then
blocked with PBST containing 5% non-fat dry milk for 1 h at 37 °C,
incubated with 50 μl serially diluted mouse antisera for 2 h at 37 °C and
then with 50 μl of horseradish peroxidase (HRP)-conjugated goat anti-
mouse IgG antibody for 1 h at 37 °C. After color development, absor-
bance was measured at 450 nm in a 96-well plate reader.

2.11. Neutralization assay

Neutralization titers of mouse antisera towards ZIKV were de-
termined by performing plaque reduction assay as described previously
(Qu et al., 2018). For a given serum sample, the percent reduction of
plaques was calculated by comparing the plaque number of this treat-
ment with that of the virus only. Values for 50% plaque reduction
neutralization titers (PRNT50) were determined by nonlinear regres-
sion analysis using GraphPad Prism version 5.

2.12. ELISPOT assay

For ELISPOT assays, splenocytes were isolated from immunized
mice five weeks after the last immunization. ELISPOT assays were
performed according to a protocol described previously (Li et al., 2016)
with the following modifications: purified EDIII protein or the EDIII
peptide pool at a final concentration of 10 μg/ml was used as stimuli in
this study. Concanavalin A (ConA) stimulation was set as the positive
control and the medium only as the negative control.

2.13. Cross-binding and antibody-dependent enhancement assays

Prior to the assays, mouse sera were pooled for each group and then
subjected to IgG purification using HiTrap™ Protein G HP column (GE
Healthcare, PA, USA).

For cross-binding assay, pre-seeded Vero cells were inoculated
(MOI=0.01 or 1) with ZIKV strain SZ-WIV01 or DENV2 strain New
Guinea C. Two days later, infected cells were fixed, permeabilized, and
collected according to the manufacturer's instructions (BD Biosciences,
San Jose, CA, USA). The cells were stained with purified polyclonal
antibodies or the 4G2 monoclonal antibody, followed by staining with
an anti-mouse Alexa Fluor(R) 488-conjugated secondary antibody (Life
Technologies). Then, the samples were analyzed on a BD LSRII flow
cytometer.

For ADE assay, serial dilutions of purified IgG or monoclonal anti-
body 4G2 (positive control) were incubated with DENV2/NGC for 1 h at
37 °C. Then, the mixtures were added to K562 cells at a MOI of 1 and
incubated at 37 °C for 2 days. Finally, cells were fixed, permeabilized
and stained with Alexa Fluor 488-conjugated anti-DENV rabbit mono-
clonal antibody (4G2), followed by flow cytometry analysis on a BD
LSRII flow cytometer. The results were analyzed with FlowJo software.

2.14. In vivo protection assays

Groups of five-week-old A129 mice (n=9) deficient in type I in-
terferon receptor were i.p. injected with 400 μl of mouse antisera and
after 24 h inoculated with ZIKV/SZ-WIV01 (105 PFU per mouse) via the
i.p. route. The mice were then monitored daily for survival and weight
loss for a period of 14 days. Mice that lost> 20% of their initial body
weight were humanely euthanized, counted as moribund sacrifices, and
recorded as dead.

2.15. Statistics analysis

All statistical analyses were performed using GraphPad Prism soft-
ware v5.0. Kaplan–Meier survival curves were compared using log-rank
test. Other results were analyzed using Student's two-tailed t-test.
Statistical significance was indicated as follows: ns, not significant
(P ≥ 0.05); *, 0.01 ≤ P < 0.05; **, P < 0.01; ***, P < 0.001.

3. Results

3.1. Generation and characterization of yeast-derived EDIII protein

To develop a recombinant ZIKV EDIII protein, an expression vector
termed pPinkα-HC-ZIKV-EDIII was constructed. This vector encoded
ZIKV EDIII fused with an N-terminal α-mating factor signal peptide and
a C-terminal 6×His tag (Fig. 1A). The pPinkα-HC-ZIKV-EDIII vector
was used to transform the PichiaPink™ yeast. From culture supernatant
of the pPinkα-HC-ZIKV-EDIII transformed yeast, recombinant ZIKV
EDIII protein was purified as described in the Materials and Methods
section. SDS-PAGE analysis showed that purified ZIKV EDIII is present
as a single protein band of approximately 13 KDa (Fig. 1B). The identity
of the recombinant EDIII protein was verified by Western blot analyses
with a ZIKV E-specific polyclonal antibody and an anti-6×His tag
monoclonal antibody (Fig. 1C). These results demonstrated that ZIKV
EDIII protein was successfully produced by recombinant yeast.

To evaluate the conformation and function of yeast-produced EDIII
protein, we performed ZIKV infection-inhibition assays with the re-
combinant EDIII and an irrelevant control protein (BSA). As shown in
Fig. 2, EDIII inhibited ZIKV infection in a dose-dependent manner with
IC50 being 7.60 μg/ml, whereas no inhibitory effect was observed for
the BSA control. The results indicated that recombinant EDIII was
adequately folded and was able to compete with ZIKV for receptor-
binding sites on the cell surface, suggesting that EDIII exhibits a sig-
nificant potential to elicit neutralizing antibodies against ZIKV.
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3.2. Yeast-derived EDIII effectively elicited antibody and T-cell responses in
mice

To evaluate immunogenicity of yeast-derived EDIII, BALB/c mice
were immunized by i.p. injection with ZIKV EDIII protein formulated
with Alum adjuvant at weeks 0, 2, and 4. Another group of mice in-
jected with PBS plus Alum adjuvant, served as the control. Serum
samples were collected at weeks 4 and 6 and analyzed for EDIII-specific
antibody by ELISA using yeast-derived EDIII as the capture antigen. As
shown in Fig. 3A, neither sera from week 4 or week 6 from the PBS
control group exhibited any binding activity; in contrast, EDIII-binding
activity was readily detectable at week 4 in the sera from EDIII-im-
munized mice and a drastic increase in EDIII-binding was observed for
the week-6 anti-EDIII sera. In addition, Fig. 3B showed that geometric
mean titers reached 13,626 and 136,258 after the 2nd and 3rd im-
munization, respectively. These data indicate that EDIII effectively
elicited antigen-specific antibody responses in mice.

We then performed ELISPOT assays to assess the vaccine-induced
cellular immune responses. As shown in Fig. 4A, splenocytes from the
EDIII-immunized mice produced significantly higher amount of IL-4-

secreting spot-forming cells (SFCs) upon stimulation with either EDIII
protein or EDIII peptide as compared to the mock (medium) treatment;
in contrast, only baseline levels of IL-4-secreting SFCs were detected in
the PBS control samples regardless of the stimuli. Similarly, EDIII
protein or EDIII peptide stimulation drastically increased the number of
IFN-γ-secreting SFCs detected in the EDIII-immunized mice but not in
the control mice (Fig. 4B). These results demonstrate that EDIII im-
munization could elicit both ZIKV-specific IFN-γ-secreting and IL-4-se-
creting T-cell responses in mice.

3.3. Neutralization potency and breadth of the anti-EDIII mouse sera

We performed plaque reduction neutralization assays to determine
the antisera's in vitro neutralization efficiency. We found that, when
tested against ZIKV strain SZ-WIV01 (Asian lineage), the anti-EDIII sera
were able to effectively inhibit plaque formation even at high serum
dilutions (e.g. 1: 6,400), whereas only low dilutions (1:25 or 1:100) of
the control sera yielded background levels of inhibition (Fig. 5A). The
PRNT50 values of individual mice of the two groups are shown in
Fig. 5B. Clearly, the anti-EDIII sera had much higher neutralization ti-
ters (geometric mean PRNT=3608) against ZIKV/SZ-WIV01 than the
control group.

To assess breadth of neutralization, individual mouse sera collected
at two weeks after last immunization were pooled for each group and
then subjected to neutralization assays against a panel of representative
ZIKV strains, including SZ-WIV01 (Asian lineage), PRVABC59 (Asian
lineage), NC-2014-5132 (Asian lineage), and MR766 (African lineage).
The result showed that the pooled anti-EDIII sera could effectively
neutralize all the strains tested (PRNTs between 905 and 2116)
(Fig. 5C), demonstrating a broad neutralization potential of the anti-
EDIII sera.

3.4. Anti-EDIII sera conferred protection against ZIKV challenge in mice

We evaluated the in vivo protective efficacy of the neutralizing
antisera in a mouse model of ZIKV infection. This model utilizes A129
mouse which lacks type I IFN receptors and has been shown to be
susceptible to ZIKV infection (Liu et al., 2016; Rossi et al., 2016). We
injected the anti-EDIII or the control sera into A129 mice and one day
later challenged the mice with ZIKV strain SZ-WIV 01 strain. As shown
in Fig. 6A, 89% (8 out of 9 mice) of the mice receiving the anti-EDIII
sera were protected from ZIKV infection-caused death whereas only
33% of the control sera-treated mice survived the challenge. In addi-
tion, the surviving mice in the anti-EDIII treatment group gained more
weight than the counterparts in the control group (Fig. 6B). These re-
sults demonstrate that the anti-EDIII neutralizing sera can confer in
vivo protection against lethal ZIKV infection.

3.5. Anti-ZIKV EDIII antibodies did not cross-react with DENV2 and
enhance its infection

To investigate whether ZIKV EDIII immune sera could potentially

Fig. 1. Expression and purification of ZIKV EDIII proteins in Pichia pastoris. (A)
Diagrams of the constructs for expressing ZIKV EDIII. TRP2-L and TRP2-R, the
up- and down-stream parts of the TRP region; PAOX1, AOX1 promoter; CYC1 TT,
CYC1 transcription termination region; ADE2, expression cassette encoding
phosphoribosylaminoimidazole carboxylase, used as the selection marker; α, α-
factor signal sequence. (B) SDS-PAGE and Coomassie Brilliant Blue staining
analysis of the purified ZIKV EDIII antigen used for mouse immunization. (C)
Western blot analysis with rabbit-anti-ZIKV-E80 polyclonal antibody (left) and
anti-6×His tag monoclonal antibody (right).

Fig. 2. Blocking of ZIKV infection in Vero cells by
ZIKV EDIII. Purified ZIKV EDIII was serially diluted
and then mixed with 100 PFU of ZIKV, next the
mixture was added to pre-seeded Vero cells im-
mediately. After 1-h incubation, the supernatant
containing EDIII and ZIKV was changed into overlay
medium, followed by plaque development, fixation,
and crystal violet staining. BSA was employed as a
negative control. (A) Reduction of plaques yielded in
ZIKV EDIII treated cells comparing to that in BSA
treated cells. (B) Quantitative analysis of normalized
plaque reduction numbers. Means ± SD are shown.
The data are representative of two independent ex-
periments.
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enhance DENV2 infection, we purified IgG antibodies from the antisera
and evaluated their cross-binding against DENV2. As shown in Fig. 7A,
the cross-reactive monoclonal antibody 4G2, which targets the con-
served fusion loop of flaviviruses, could efficiently bind both ZIKV and
DENV2, thus validating the assay. IgG antibodies purified from EDIII-
immunized mouse sera positively stained the ZIKV-infected Vero cells
but not the DENV-infected cells. As expected, treatment with polyclonal
IgG antibodies from the control (PBS) mice only yielded background
levels of signal in both ZIKV- and DENV2-infected cells (Fig. 7A). These
data indicate that anti-ZIKV-EDIII antibodies did not cross-react with
closely related DENV.

We further determined whether anti-ZIKV-EDIII antibodies could
enhance DENV2 infection in vitro by performing ADE assays with the
monoclonal antibody 4G2 as the positive control. As shown in Fig. 7B,
4G2 treatment produced a typical antibody dose-dependent enhance-
ment profile of DENV2 infection in K562 cells. In contrast, polyclonal
IgG antibodies isolated from the ZIKV EDIII immune sera or from the
control sera did not exhibit significant enhancing effect on DENV2 in-
fection regardless of the antibody doses used. Collectively, the above
results demonstrated the anti-ZIKV-EDIII antibodies did not bind
DENV2 and therefore could not promote ADE towards DENV2 infec-
tion.

4. Discussion

The present study was aimed at investigating the possibility of de-
veloping a ZIKV subunit protein vaccine based on yeast-produced EDIII.
We found that EDIII could be readily produced in P. pastoris yeast and
vaccination with yeast-derived EDIII could induce protective immunity
in mice. Yeast-derived EDIII appeared to fold adequately to display
native conformation as it could inhibit ZIKV infection in vitro (Fig. 2)
probably by competing with the virus for receptor binding sites on the
cell surface. The experimental results are consistent with the notion that
EDIII of flaviviruses encodes a primary viral receptor-binding motif

(Rey et al., 2017). It has been reported that ZIKV EDIII displays epitopes
recognized by strongly neutralizing monoclonal antibodies (Gromowski
and Barrett, 2007; Pierson et al., 2008; Sukupolvi-Petty et al., 2007;
Zhao et al., 2016), suggesting that ZIKV EDIII is a major inducer of
neutralizing antibodies. In agreement with these findings, our results
showed that yeast-derived EDIII indeed potently elicited ZIKV-neu-
tralizing antibodies in mice (Fig. 5). Notably, anti-EDIII sera could ef-
ficiently neutralize ZIKV representative strains of both Asian and
African lineages (Fig. 5), suggesting the potential utility of yeast-de-
rived EDIII as a universal ZIKV vaccine.

In the present study, we demonstrated that passive transfer with
neutralizing antisera protected recipient mice against ZIKV lethal
challenge (Fig. 6). Similar observations have been made by other
groups (Abbink et al., 2016; Larocca et al., 2016; Qu et al., 2018).
Together, these findings indicate that neutralizing antibodies play a key
role in protection against ZIKV infection. We also found that our EDIII
vaccine could elicit robust IFN-γ- and IL-4-secreting T-cell responses
(Fig. 4). These T-cell responses are likely important for B-cell matura-
tion (Blom et al., 2013) and production of high-titer neutralizing anti-
bodies (Kohler et al., 2012) and may provide additional protective ef-
fects (Larocca et al., 2016). Therefore, the ability to evoke both
humoral and cellular immune responses is a desirable trait for the yeast-
derived EDIII vaccine.

Perhaps the most significant finding from this study was that yeast
can be utilized to robustly produce protective EDIII vaccine.
Recombinant EDIII protein was secreted into supernatant of yeast cul-
tures and readily purified at levels around 4.5 mg/L under our labora-
tory conditions. Such a yield is much higher than that of inactivated
whole-virion ZIKV vaccine. It is likely that EDIII production in yeast can
be further increased by optimization of the production process,such as
screening and identification of high-expressing clones, characterization
of biomass growth and product formation, and development of fed-
batch processes (Looser et al., 2015). As recombinant expression sys-
tems, yeasts possess properties desirable for vaccine production

Fig. 3. Antibody responses elicited by ZIKV EDIII.
(A) Mice serum samples collected at 2 weeks after
the 2nd and 3rd injections were diluted 1:10,000 and
subjected to ELISA to detect the ZIKV EDIII-specific
antibodies. The horizon bars indicate geometric
means of OD 450 of each group. (B) ZIKV EDIII-
specific antibodies titers were also determined by
performing ELISA. Each symbol represents a mouse
and the line indicates geometric mean value of the
group. Significant differences were calculated using
Student's two-tailed t-test and shown as: **,
P < 0.01.

Fig. 4. Cellular immune responses in EDIII-im-
munized mice. (A) IL-4 ELISPOT assay. (B) IFN-γ
ELISPOT assay. Splenocytes from three mice at week
5 after last immunization were isolated and pooled.
Approximately 106 Splenocytes were plated out per
well and stimulated with yeast-derived ZIKV EDIII or
peptide pool spanning the entire ZIKV EDIII for 48 h.
The cytokine production is expressed as spot-forming
cells (SFCs) per 106 splenocytes. Means and SEM of
triplicate wells are shown. The asterisks represent
significant differences between medium and ZIKV
EDIII stimulation or between medium and peptides
in each group. ns, no significance (P ≥ 0.05); *,
0.01 ≤ P < 0.05; **, P < 0.01; ***, P < 0.001.
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including high scalability, easy manipulation, and relatively high yield.
Vaccine manufacturers in some developing countries where ZIKV vac-
cines are needed have already developed facilities and gained experi-
ence in producing yeast-derived vaccines, such as HBV and HPV vac-
cines. Therefore, the identification of P. pastoris yeast as an EDIII
production platform will undoubtedly facilitate future development and
production of EDIII-based ZIKV vaccine.

One of the major concerns in the development of flavivirus vaccines
is the risk of vaccine-induced ADE towards heterologous flaviviruses
(Halstead, 2016; Halstead and Russell, 2016; Morens, 1994; Ng et al.,
2014). The phenomenon of ADE is largely attributed to the presence of
cross-reactive and non-neutralizing heterotypic antibodies prior to in-
fection (Halstead et al., 2010). ZIKV shares high-degree of similarity in
amino acid sequence and structure of the prM and E proteins with other
flaviviruses, with the majority being located in EDII and its neighboring
region (Dai et al., 2016; Dejnirattisai et al., 2016; Sirohi et al., 2016).
Therefore, it is likely that antibodies against the prM or E proteins of
ZIKV could cross-react with the counterparts on closely related flavi-
viruses such as DENV or WNV and therefore promote ADE. Indeed, it
has been shown that antibodies targeting the ZIKV EDI/II were cross-
reactive and enhanced DENV infection both in vitro and in vivo
(Stettler et al., 2016). Recently, Richner et al. reported that mRNA
vaccines containing the unmodified prM-E sequence induced cross-re-
active antibodies promoting ADE for DENV in cells and in mice, and the
fusion loop located on EDII was implicated as the inducer of ADE

antibodies (Richner et al., 2017). In the present study, we used EDIII,
which does not contain potential enhancing antibody-inducing EDI/II
regions, as the vaccine antigen. We demonstrated that anti-EDIII anti-
bodies did not bind DENV and enhance DENV infection in vitro (Fig. 7).
Our results are in agreement with previous reports showing that
monoclonal antibodies targeting ZIKV EDIII are type-specific, robust
neutralizing antibodies (Stettler et al., 2016; Wang et al., 2016; Zhao
et al., 2016). These findings indicate that EDIII as an antigen is superior
to full-length E protein in terms of minimal risk to induce cross-reactive
enhancing antibodies and therefore should be considered in the design
of new-generation ZIKV vaccines.

Collectively, our results show that ZIKV EDIII protein can be ro-
bustly produced in yeast and it potently induces protective immunity
against ZIKV infection without elicitation of cross-reactive and infec-
tion-enhancing antibodies for DENV, thus demonstrating that yeast-
produced EDIII is a safe and effective ZIKV vaccine candidate worthy of
further development.
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