Options for developing in-house data management capacity

Turning data into information...

Lesley Workman Data Management, GHT January 2013

"No study is better than the quality of its data"

Fundamentals of Clinical Trials, Friedman LM, Furberg CD, DeMets DL, 1998

Background: Computerised DM

- 1990's PC's, databases and spreadsheets (DBase, Quatro)
- 1996 Commercial databases (Oracle Clinical)
- 2006 Open source commercial (OpenClinica)

Clinical Data Management is now a recognised profession, increasingly becoming recognised as an essential component of clinical research

What is Data Management?

- Process of defining, gathering, capturing, cleaning, monitoring, analysing and reporting study data
- Starts with protocol development
- Ends with....
 - Once the final results have been published?
 - Once the study has been archived?
 - Once the data has been integrated into a larger data sharing repository to be used to answer important global health or related issues?

Objectives of a CDMS

Produce data

- of provable quality
- timeously
- while adhering to the regulatory and legal requirements regarding:
 - Privacy
 - Auditability
 - Electronic signatures
- from which information can be generated to answer the research question

Database

- Database engine including the programs, meta-data and configuration tool
 - Distinct differences between packages
 - General purpose end-user packages such as MS Access
 - Industry-specific packages such as Oracle Clinical
- System security (controlled & secure access to participant data)
 - Is built into commercial packages
 - Must be programmed into MS Access (but with significant limitations)
- Validation encompasses
 - all aspects of the package installation
 - appropriate hardware and software versions
 - <u>correct installation of additional components</u>

Configuration

- Define the data and rules about the data
 - Commercial packages have a built in structure which can be readily configured by a trained researcher
 - The data structure and rules must be created in MS Access by a skilled MS Access resource
- System assurance
 - Configuration is fit for purpose
 - Consists of standard tests that ensure all rules are triggered and data is correctly stored
 - Assurance must be performed whenever there is a change to the configuration

Management

- The management component of the CDMS comprises a Data Management Plan, SOPs and CRFs
 - Suitably trained staff
 - Role definitions, training plans and materials
 - Data Management Plan
 - Includes a quality management plan, CRF design, database design, validation and build, audit trails, CRF tracking and storage etc etc etc
 - SOPs
 - For every aspect of data handling process from CRF completion through to archiving of paper and electronic records
 - Audit procedures
 - Standard audit procedures to ensure that regulatory compliance requirements are met.

Types of CDM systems

In-house built

- MS Access, Filemaker
- Open source packages
 - Openclinica, Redcap, EpiInfo
- Commercial packages
 - Cmed, Oracle Clinical, DataFax

Different types of studies require different type of CDMS

Phase 1, 2 and 3.

FDA 21 CFR – to deter record/signature falsification Part 11.10(e) stipulates an "independently-recorded" audit trail 21 CFR Part 11.10(j) states its intent is to ensure an irrefutable link between the electronic record and the electronic signature

- Phase 4
- Epidemiologic, Observational/surveys
- Record collection/folder review

But they all need to comply with ICH/GCP DM principles

Industry vs Academic

Pharma Industry

- Minimising time to the final study report
- Assured of compliance to regulations governing registration of a new product
- Academic/research Institutions
 - Scope of the work not well defined
 - Limited budget
 - Lack of suitable skilled staff

Study requirements to consider when selecting a CDMS

- Will the data need to be submitted to regulatory authorities such as FDA for possible registration?
- Coding dictionaries e.g. MEDdra (licensing)
- National and other regulatory requirements/guidelines such as
 - CFR 21 Part 11 for the United States
 - Directive 2001/20/EC for the EU countries
 - ICH GCP and GCDM
 - POPIA (Protection of Personal Information Act) RSA 2013

Quality triangle

Cost

 Reducing cost will either increase time, reduce scope or compromise quality

Time

- Shortening the time to database lock will comprise quality and/or increase cost
- Quality
 - Compromising on quality makes us less confident of the data

Out-source CDMS

Issues relating to an out-sourced CDMS

- Sufficient budget? (hidden costs)
- Validation of the system to ensure the necessary compliance to regulations – who is responsible?
- Version control, back-up and server hosting
- Staff to do the data capture and query resolution (and could still need an in-house data manager)
- Clear roles and responsibilities
- How to handle external data and who is responsible for mapping
- Who owns the data at the end of the study?
- Issues if data is held offshore EU privacy laws impact 'export' of your own data

In-house CDMS

- Data design issues (DB structures, specification)
- Security & audit trail issues
- Validation (IQ, OQ, PQ)
- Management (staff, SOP's and DM plan)
- Version control
- Back-up and recovery

Personal Experiences

- Very high costs of out-sourcing
 - Compromise on the scope of the study (less patients/visits)
- Lack of trained Data Designers/Managers
 - Excel doesn't cut it!
 - spreadsheets' in Access
 - massive number of queries/large chunks of missing data
 - free text fields are not data
- Vendor management
 - Commercial agreements
 - Ownership of data
 - Additional cost for changes or omissions/misunderstandings

Laboratory and Other External Data

- Essential that the data integrity, quality and confidentiality are maintained
- QC on each stage of the data handling process to ensure all data are reliable and accurate
- Maintain a document and system audit trail
- Test data transmission before a live upload
- Early communication with external vendors to
 - Establish key and mandatory variables-specifications
 - Editing and verification procedures
 - Format and mapping of the transfer data
 - Query resolution
 - Maintain the study blind if applicable

How can we move towards in-house CDMS that meet appropriate regulatory requirements?

- Create a centre of excellence
 - Standardise on Open Source Database e.g. OpenClinica
 - Standardise Configuration
 - Standard Data Structure
 - External dictionaries
 - Standardise Management
 - DM plan/quality management plan
 - SOP's
 - Training courses

And this will lead to.....

- Capacity building
- Strengthening of the Health Science Faculty research capacity
- A reference centre for other research institutions
- Retention of skilled expertise in the clinical research environment

"Experience is the name everyone gives to their mistakes"

(Oscar Wilde)

Lesley Workman Data Management, GHT January 2013