Criteria for Seropositivity: Standardization for Serologic Confirmation of Avian Influenza A (H5N1) Virus Infection

Jacqueline Katz, PhD and Tim Uyeki, MD

Influenza Division,
Centers for Disease Control and Prevention, U.S.A.

CONSISE Workshop
Sept 3-4, 2013, Cape Town, South Africa
Serologic Assays for Detection of H5N1 Virus Antibodies

- Hemagglutination-Inhibition (HI)
 - Horse or turkey/chicken RBC

- Neutralization assays
 - Microneutralization (MN) or Virus Neutralization (VN)
 - Pseudotype viral particle neutralization (PN)

- ELISA using rHA

- Single radial hemolysis (SRH) Assay

- Western blot
Criteria for Seropositive Results for Serologic Tests used in 1997 H5N1 Investigations

- Microneutralization assay
 - Titer of $\geq 1:80^*$ in 2 independent assay
 - Seroconversion (≥ 4-fold rise) between acute/convalescent paired sera

- Confirmatory assay to enhance specificity
 - Western Blot (CDC) with H5 rHA
 - SRH (Hong Kong Dept. of Health Lab)

Using MN starting dilution = 1:20 convention
Kinetics of Antibody Response in H5N1 Virus-infected Humans Determined by Microneutralization (MN) Assay

MN titer = 80
Age and Sensitivity, Specificity of H5 Serologic Tests

- **Children aged <15 yrs MN+WB tests**
 - Sensitivity: 88% (n=8); Specificity: 100% (n=24)

- **Adults aged 18-59 yrs MN+WB tests**
 - Sensitivity: 80% (n=8); Specificity: 96% (n=85)

- Frequency of Seropositives for H5 MN antibody in non-exposed baseline samples increased with age

- Person meeting clinical definition of H5N1 case AND:
 - Serological confirmation with appropriately timed paired sera:
 - >4-fold rise in H5N1 neutralization antibody titer
 - Convalescent neutralizing antibody titer \(\geq 1:80 \) (1:20 starting dilution)
 - Serological criteria for single serum collected \(\geq 14 \) days after symptom onset
 - H5N1 neutralization antibody titer \(\geq 1:80 \)
 - Positive result using a different assay
 - Horse RBC HI titer of \(\geq 1:160 \) or greater or positive H5-specific western blot result

http://www.who.int/cdr/disease/avian_influenza/guidelines/case_definition2006
<table>
<thead>
<tr>
<th>Population</th>
<th>Country/Year</th>
<th>Criteria</th>
<th>Confirm Assay?</th>
<th>Reported seroprevalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Villagers</td>
<td>China, 2004</td>
<td>cRBC HI ≥ 20</td>
<td>MN</td>
<td>3%</td>
</tr>
<tr>
<td>Villagers</td>
<td>Turkey, 2006</td>
<td>ELISA + cRBC HI ≥ 20</td>
<td>MN ≥ 10</td>
<td>0%</td>
</tr>
<tr>
<td>Villagers</td>
<td>Thailand, 2008</td>
<td>MN ≥ 10</td>
<td>No</td>
<td>5.6%</td>
</tr>
<tr>
<td>Villagers</td>
<td>Cambodia, 2006</td>
<td>MN ≥ 80</td>
<td>WB</td>
<td>1%</td>
</tr>
<tr>
<td>Villagers</td>
<td>Cambodia, 2007</td>
<td>PN ≥ 20 (to screen)</td>
<td>MN ≥ 80</td>
<td>2.6%</td>
</tr>
<tr>
<td>Poultry workers</td>
<td>China, 2006</td>
<td>tRBC HI = 320</td>
<td>MN = 640</td>
<td>0.9%</td>
</tr>
<tr>
<td>Poultry workers</td>
<td>China, 2007-08</td>
<td>HI- no criteria</td>
<td>MN - no criteria</td>
<td>0.8%</td>
</tr>
<tr>
<td>Poultry workers</td>
<td>China, 2010</td>
<td>hRBC HI ≥ 160</td>
<td>No</td>
<td>2.6%</td>
</tr>
</tbody>
</table>
Decline in Serum Antibody Response to H5N1 Virus over Time in Asymptomatic Persons*

(Vong et al., JID 2009)

<table>
<thead>
<tr>
<th>Subject</th>
<th>MN titer at estimated time post exposure</th>
<th>Fold drop in titer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1-2 months</td>
<td>10-11 months</td>
</tr>
<tr>
<td>A</td>
<td>80</td>
<td>20</td>
</tr>
<tr>
<td>B</td>
<td>320</td>
<td>40</td>
</tr>
<tr>
<td>C</td>
<td>1280</td>
<td>320</td>
</tr>
<tr>
<td>D</td>
<td>640</td>
<td>20</td>
</tr>
<tr>
<td>E</td>
<td>640</td>
<td>160</td>
</tr>
<tr>
<td>F</td>
<td>640</td>
<td>80</td>
</tr>
<tr>
<td>G</td>
<td>160</td>
<td>20</td>
</tr>
</tbody>
</table>

* Using serological data from 11 severely ill H5N1 (cl 1.1) patients, a fractional polynomial regression model predicted rising titers of ≥80 2 weeks post onset, peak titer achievement at 5-6 weeks and a titer >80 beyond 2 years (Buchy et al., 2010)
Factors to Consider for Development of H5N1 Virus Antibody Seropositivity Criteria - I

- **Timing of sera collection in relationship to H5N1 virus exposure or illness onset**
 - >14 days post symptom onset and >> 14 days post exposure
 - Before waning of antibody response (6-9 months?)

- **Use of relevant clade/virus antigen in assays**

- **Sensitivity of assay**
 - Use criteria with high sensitivity to detect antibody in RT-PCR confirmed cases (mild to severe)
 - Cutoff of ≥1:10 ≥1:20 may be too low

- **Specificity of assay**
 - Use criteria that results in low/no detection of positives in age-matched unexposed persons
 - Adsorption of cross-reactive antibodies to seasonal influenza viruses (infection or vaccination)
Factors to Consider for Development of H5N1 Virus Antibody Seropositivity Criteria - II

- Do we need different criteria for different situations?
 - Persons with symptomatic illness and serological confirmation of H5N1 virus infection versus
 - Patients with more severe disease generally had higher antibody titers than those with clinically mild illness, regardless of age
 - Seroprevalence studies to identify asymptomatic or clinically mild illness

- Is a confirmatory assay still needed or recommended?
- If so:
 - hRBC HI \(\geq 160 \) may be too stringent?
 - hRBC HI may be insensitive for some H5N1 clades
 - Western blot lacks specificity

- Should the H5N1 seropositive criteria be applied to other avian influenza A virus subtypes (H7, H9)?