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Aging and HIV/AIDS: pathogenetic role of therapeutic
side effects
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The intersection of aging and HIV/AIDS is a looming ‘epidemic within an epidemic.’ This paper reviews how HIV/AIDS and
its therapy cause premature aging or contribute mechanistically to HIV-associated non-AIDS illnesses (HANA). Survival
with HIV/AIDS has markedly improved by therapy combinations containing nucleoside reverse transcriptase inhibitors
(NRTIs), non-nucleoside reverse transcriptase inhibitors, and protease inhibitors (PIs) called HAART (highly active anti-
retroviral therapy). Because NRTIs and PIs together prevent or attenuate HIV-1 replication, and prolong life, the popu-
lation of aging patients with HIV/AIDS increases accordingly. However, illnesses frequently associated with aging in the
absence of HIV/AIDS appear to occur prematurely in HIV/AIDS patients. Theories that help to explain biological aging
include oxidative stress (where mitochondrial oxidative injury exceeds antioxidant defense), chromosome telomere
shortening with associated cellular senescence, and accumulation of lamin A precursors (a nuclear envelop protein). Each
of these has the potential to be enhanced or caused by HIV/AIDS, antiretroviral therapy, or both. Antiretroviral therapy
has been shown to enhance events seen in biological aging. Specifically, antiretroviral NRTIs cause mitochondrial dys-
function, oxidative stress, and mitochondrial DNA defects that resemble features of both HANA and aging. More recent
clinical evidence points to telomere shortening caused by NRTI triphosphate-induced inhibition of telomerase, sug-
gesting telomerase reverse transcriptase (TERT) inhibition as being a pathogenetic contributor to premature aging in HIV/
AIDS. PIs may also have a role in premature aging in HIV/AIDS as they cause prelamin A accumulation. Overall, toxic side
effects of HAART may both resemble and promote events of aging and are worthy of mechanistic studies.
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HIV/AIDS AND AGING, THE SCOPE OF THE PROBLEM
Approximately one million US residents are infected with
HIV-1 or have overt AIDS.1,2 HIV/AIDS survival has been
enhanced by nucleoside reverse transcriptase inhibitors
(NRTIs), non-nucleoside reverse transcriptase inhibitors
(NNRTIs), and protease inhibitors (PIs) in combinations
frequently referred to as ‘HAART’ (highly active antiretroviral
therapy). HAART prevents or attenuates HIV-1 replication
and improves survival, making HIV/AIDS a chronic illness.3

Of note, long-term side effects from antiretroviral agents are
poorly understood and may be incompletely recognized as
yet, as patients receiving decade long HAART therapy are now
growing in number. The population with HIV/AIDS that is
surviving into ‘senior citizenship’ is growing because of those
same therapeutic advances, and this argues for the increased
prevalence and recognition of important side effects.

Both HIV/AIDS per se and its therapy contribute to the
phenotype of immune senescence, which is found in aging in
the absence of HIV/AIDS.4–13 A combination of HIV/AIDS
and HAART likely exhibits long-term effects on the
mitochondrial genome and many of the observed
deleterious events result from, are triggered by, or are
enhanced by oxidative stress and mitochondrial dysfunction.
The interplay of these events is complex and regulation may
occur at a variety of cellular levels.

Figure 1 shows the complex interactions that are proven or
presumed contributors to aging and HIV/AIDS. A robust
interplay occurs between the mechanisms for aging, toxicity
of HIV/AIDS therapy, and other events that together serve as
a pathogenic foundation for the aging phenotype.14 This
review focuses primarily on side effects of antiretroviral
therapy and how those side effects impact development and
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prevalence of non-immunologically driven diseases in HIV/
AIDS patients. Many of these side effects involve or are tied
to mitochondrial dysfunction and oxidative stress. Others
have underpinnings in classic theories of aging that are
intertwined with metabolic changes in the mitochondria. The
interplay contributes to the enhancement of illnesses
associated with aging on a ‘mitochondrially centered’ basis.

Three important theories that explain the aging process are
oxidative stress, telomerase inhibition and telomere short-
ening, and lamin A mutations and accumulations. Each
directly, indirectly, or in combination relates to HIV/AIDS
and side effects of HAART. For the purpose of this review,
aging is defined as ‘progressive deterioration of virtually
every bodily function over time,’ ultimately resulting in death.15

OXIDATIVE STRESS
‘Oxidative stress’ has been used to describe a biological state
in which cellular production of reactive oxygen species (ROS)
exceeds antioxidant scavenging capacity and results in dele-
terious events in cells, tissues, and organs. This term has been
challenged, because production of ROS can occur in isolated
organelles, such as mitochondria, without perturbing the
entire cell.16 Moreover, ROS exhibits both physiological and
pathophysiological signaling roles that further complicates
interpretation of their effects as deleterious, salutary, or both.16

In mammalian cells, the major sources of ROS include the
mitochondrial electron transport chain (ETC), the NADPH
oxidases, xanthine oxidase, and uncoupled nitric oxide synthase
enzymes. There is interplay between these, such that excessive
production of ROS from one source can activate another.

Oxidative phosphorylation (OXPHOS), the product of the
mitochondrial electron transport machinery for ATP pro-
duction, declines with age.17,18 Respiration rates and specific
activities of ETC complexes I and IV decline as a function of
age in both liver and skeletal muscle tissue. This decline in
OXPHOS promotes oxidative stress. Reduced transcription

of 12S rRNA and cytochrome c oxidase mRNA have been
demonstrated in the heart and brain of aged mice.
Deficiencies in cytochrome c oxidase activity in the cardiac
and skeletal muscle and brain have been observed in aging
along with patterns of altered mtDNA.19

Linnane and co-workers20–22 emphasized that mammals
with short lifespans, such as mice, are particularly effective to
study mtDNA changes found in aging. Along with features of
higher metabolic rates that may contribute to development of
mtDNA mutations, inbred strain genetics, and ease of care
and husbandry argues for the utility of murine models for
studies of aging. Others support a pattern of accumulation of
mtDNA deletions in aging animals and human tissues
including heart. Conversely, Attardi’s group23 showed that
human centenarians have mtDNA mutations near the
replication origin that confer longevity, and this may
impact mtDNA replication.

Abundant evidence supports the notion that aging is as-
sociated with mitochondrial dysfunction, decreased OX-
PHOS, and oxidative stress.24–27 At least 10 mtDNA deletions
have been observed in tissues (including the myocardium)
from a 69-year-old woman with no known mitochondrial
disease, suggesting that mtDNA changes in aging are pre-
valent.28 These included a common 4977 bp deletion
described by Wallace’s group28 in a series of hearts with
both ischemic changes and aging. Analogous findings were
obtained by others who estimate its prevalence at E0.1%.
The presumed random accumulation of mtDNA defects in
the aging, failing heart may result in an array of myocytes
that produce Linnane’s myocardial ‘bioenergy mosaic’; how-
ever, mtDNA oxidative changes could be more specific.20

Because of heteroplasmy in mtDNA segregation, the genetic
dosage of a defect will have significant impact.

OXIDATIVE STRESS AND HIV/AIDS
Oxidative injury is integral to HIV/AIDS as a potent inducer
of viral activation, viral replication, and DNA damage in
infected cells.29–33 Clinically, HIV-1 infection is associated
with a decrease in both intracellular and systemic glutathione
(GSH).34,35 This primary decrease in antioxidant defenses is
the converse of increased oxidant production, but yields the
same functional result.36,37

HIV-1 gene products such as HIV-1 transactivator (Tat)
cause oxidative stress. In transgenic (TG) mice that express
Tat driven by the b-actin promoter, total intracellular GSH
declines significantly in liver and erythrocytes.38 Flores’
group39 showed that the Tat protein decreases SOD2 cellular
expression in vitro. Because SOD2 is localized in the mito-
chondria, this lack of SOD2 would increase mitochondrial
superoxide levels. Our group showed that HIV-TAT expre-
ssion that was transgenically targeted to the heart caused
severe mitochondrial damage, mtDNA depletion, and heart
failure in vivo, which supported those previous findings.40

This depletion of mtDNA will lead to a reduction of proteins
in the ETC, which also increases electron leak and superoxide

Figure 1 Aging in AIDS results from the interplay of biological events,

toxic events, and therapeutic side effects.
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production from this source and promotes oxidative stress on
that basis.

OXIDATIVE STRESS AND NRTIs
The structural similarity between nucleoside analogs and
native nucleosides/nucleotides enables NRTIs to interfere with
HIV-1 reverse transcriptase (RT) and inhibit viral replica-
tion.41 Eukaryotic nuclear DNA polymerases that replicate
and repair nuclear DNA are less significantly inhibited by
NRTI triphosphates than is HIV-1 RT. Among the eukaryotic
polymerases, pol g, the eukaryotic mtDNA replicase is
inhibited by NRTI triphosphates at micromolar levels,
which is toxicologically relevant.42,43 NRTI phosphorylation
leads to inhibition of mtDNA replication at the level of pol g,
which leads to depletion of mtDNA, oxidative stress, and
inhibition of TERT in the mitochondria (Figure 2).44–46

Our ‘pol g hypothesis’ linked mitochondrial toxicity of
NRTIs to inhibition of pol g, to oxidative stress, and to mtDNA
replication defects (Figure 2).29,30,47 Our group and others
showed altered mtDNA replication and decreased energetics
are related to toxicity of zidovudine triphosphate (30-azido-
20,30-deoxythymidine, AZT) and its pol g inhibition
kinetics.42,43,48,49 The ‘pol g hypothesis’ does not completely
explain all toxic manifestations of NRTIs; the exceptions that
exist invoke other toxic mechanisms; however, the structure–
function relationship for some thymidine analogs as
mitochondrial toxins is reasonably established and has held true
in clinical trial where mitochondrial toxicity caused cessation.50

Early in the HIV/AIDS epidemic, it was recognized that
toxicity of NRTIs appeared to target the mitochondria.51–54

Today mitochondrial side effects are considered relatively
common and well established with NRTIs.55,56 Nonetheless,
long-term toxic effects (as may be seen in aging patients

treated for decades) are less well studied. These toxic events
may relate mechanistically to myocardial infarct, congestive
heart failure, liver failure, renal failure, peripheral neuropathy,
lactic acidosis, and muscle toxicity in HIV/AIDS (Table 1).
Importantly, many of the illnesses are part of the spectrum of
diseases seen in aging irrespective of HIV/AIDS.

Not all NRTI compounds contribute directly to
mitochondrial toxicity at the level of pol g. Carbovir
triphosphate (20,30-dideoxy-20,30-didehydroguanosine tri-
phosphate; CBVTP) is an example of a compound that fails
to support directly the ‘pol g hypothesis.’ Our group has
shown that NRTIs contributed to mitochondrial dysfunction
in TG mouse models of HIV/AIDS (NL4-3D gag/pol TG) and
that TGs treated with mono-NRTI and HAART and showed
oxidative stress was integral to toxic mechanisms.57–61 The
failure of CBVTP to be toxic via this proposed mechanism is
mostly likely due to the relatively weak inhibition of pol-g
in vitro compared with other NRTI triphosphates.

mtDNA depletion leads to reduction of mitochondrially
encoded proteins that have important roles in the ETC for
OXPHOS. OXPHOS dysfunction promotes electron leak
(uncoupling) and superoxide production as well. Such defects
in mtDNA replication and decreased energetics are caused by
AZT in vivo using various animal models including rats and
TG mice harboring genes of HIV, and that are treated with
mono-NRTI and HAART combinations.29,30,54,57,58,60–62

Pathophysiological mechanisms, as they relate to suscep-
tible mtDNA mutation loci, also have not been elucidated
completely, and merit further clinical and experimental
study. Using genetically engineered murine models, Suoma-
lainen’s group63 showed that their Polg-Mutator mice had
neural (NSC) and hematopoietic progenitor dysfunction
from embryogenesis to adulthood because of defective pol g

Figure 2 Relationship between mitochondrial dysfunction from HIV/AIDS therapy and mitochondrial DNA replication and mitochondrial telomerase.

Both mitochondrial TERT and pol g are inhibited by AZTTP and other NRTI triphosphates. These interactions may promote the changes of aging,

including oxidative stress, mitochondrial dysfunction, loss of TERT protection of mtDNA, and other events. It invokes a new relationship between

inhibition of both enzymes and NRTIs in the mitochondria.
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activity. Abundance of stem cells was reduced in vivo, leading
to anemia and lymphopenia, and all are related to ROS-
induced dysfunction.63 As proof of principle, our group
showed that cardiomyopathy caused by NRTIs in vivo is
ameliorated in young mice by overexpression of SOD2 or
mitochondrially targeted catalase expression in mice (called
mCAT), suggesting that the heart is protected by catalase
expression in the mitochondria.64

NRTI TOXICITY AND OXIDATIVE STRESS
As mentioned, energy deprivation results from mtDNA
depletion that causes defective OXPHOS. This depletion is a
cornerstone of theories explaining NRTI toxicity in tissue
where OXPHOS is critically important.57,58 Lactic acidosis
and clinical manifestations of energy deprivation occur in
patients receiving NRTIs.65–67 8-Hydroxydeoxyguanosine
(8-OHdG) is an oxidative base product of DNA that
reflects oxidative stress and clinical mitochondrial
dysfunction; 8-OHdG is present in mtDNA at levels 16-fold
higher of those in nuclear DNA.68,69 8-OHdG in DNA leads
to GC-TA transversions unless the error is repaired.70

Therefore, 8-OHdG is a potent mutagen that could relate
to NRTI toxicity.71 This is clinically important because trace
amounts of 8-OHdG in the mitochondria can markedly
reduce DNA pol g replication fidelity, as suggested by the
data from studies in vitro.72

mtDNA sustains more damage than nuclear DNA in an
oxidative event.73,74 Measurements of 8-OHdG performed
experimentally in tissue culture or on isolated mitochondria
from animal tissues serve as an index of this form of mtDNA
oxidative damage as the proximate target of mitochondrial
oxidative stress.57,58 It has been estimated that the number of
oxidative hits to DNA per cell per day is E100 000 (in rats)
and this may relate to mtDNA deletions.26 Linnane’s mtDNA
‘bioenergy mosaic’ was defined histochemically as a spectrum
of mitochondrial activity in tissue (eg, myocardial cyto-
chrome c oxidase activity changes with aging).75 In the
nucleus, DNA repair enzymes efficiently remove most of the
lesions.68,69 Such enzyme systems are relatively less effective
or absent in the mitochondria to repair mtDNA.76–78 Oxi-
dative damage to skeletal muscle of mice and rats, and
massive conversion of dGuo to 8-OHdG in mice has been
attributed to AZT toxicity.79–81

Pathophysiological events occur when the threshold of
damage impacts organ function, according to the OXPHOS
paradigm and the ‘pol g hypothesis.’82 The importance of
mitochondrial oxidative damage is supported by the
coexistence of malondialdehyde on (or near) the inner
mitochondrial membrane, implying importance of its
membrane localization to mitochondrial injury.83 Malondial-
dehyde’s interaction with mtDNA could lead to crosslinking,
errors in transcription, or polymerization, and impact
mtDNA biogenesis and replication on that basis.

NRTIs have been used for other viral infections with
similar toxic events. The documented anti-HBV activity of
fialuridine (1-(20-deoxy-20-fluoro-beta-D-arabinofuranosyl)-
5-iodouridine; FIAU) was first reported against model
hepatitis viruses like duck hepatitis and woodchuck hepatitis
virus (WHV).84–91 Such studies served as preclinical evidence
for a clinical trial in patients with chronic active hepatitis B.92

The resulting tragic clinical experience with FIAU was a
significant setback for the therapeutic expectations of the
family of antivirals because of FIAU’s serious toxicity that
included death of some patients.93 Toxic manifestations of
FIAU included profound lactic acidosis, hepatic failure and
coma, skeletal and cardiac myopathy, pancreatitis, and peri-
pheral neuropathy.92 Livers from autopsies and explants from
patients who survived and underwent liver transplantation
showed marked micro- and macrovesicular steatosis.92 These
clinical data were substantiated by our own studies with
FIAU-treated M. monax (Eastern woodchuck; WC) infected
with WHV in which multiorgan mitochondrial toxicity was
found in FIAU-treated WC.94,95 This led to a retrospective
evaluation of trials and a report generated by the Institute of
Medicine.96

Previous data about D-isomers of FIAU metabolites, FMAU
(1-(2-deoxy-2-fluoro-b-D-arabinofuranosyl)-5-methyluracil)
and FAU (1-(2-deoxy-2-fluoro-b-D-arabinofuranosyl)uracil),
predicted and documented their toxicity on a biochemical
basis.42,97,98 In 2009 a severe toxic mitochondrial myopathy
was recognized to be caused by treatment with the L-isomer

Table 1 Aging and NRTI toxicity: clinical features and targets

NRTI Tissue (mitochon-
drial) target

Findings related to aging

AZT Skeletal muscle Mitochondrial myopathy;

depleted mtDNA

Myocardium Cardiac failure; mitochondrial

cristae dissolution

Multiple tissues Lactic acidosis; hyperlactatemia

Liver Hepatomegaly, steatosis

Adipocyte Lipodystrophy/lipoatrophy/

lipohypertrophy

ddC Peripheral nerve Painful peripheral neuropathy

ddI Peripheral nerve Painful peripheral neuropathy

d4T Peripheral nerve Painful peripheral neuropathy

Lipodystrophy/lipoatrophy/

lipohypertrophy

FDDA Myocardium Dysrhythmia, sudden death

L-FMAU Skeletal muscle Mitochondrial myopathy

FIAU Liver, heart, muscle,

pancreas

Acidosis; liver, kidney, heart

failure

TDF Kidney Mitochondrial tubular disease

www.laboratoryinvestigation.org | Laboratory Investigation | Volume 94 February 2014 123

PATHOBIOLOGY IN FOCUS Aging with HIV/AIDS

RA Torres and W Lewis

http://www.laboratoryinvestigation.org


known as clevudine (L-FMAU), an enantiomer of FMAU
that was considered safe based on studies performed
preclinically and early clinical studies.97,99,100 Toxicity of
clevudine caused the abrupt discontinuation of that trial
based on findings that included mitochondrial myopathy
(resembling that seen previously with AZT) and mtDNA
depletion (as seen with AZT and FIAU).55 Toxicity from
this NRTI limited options for millions of patients, and
increased morbidity for those already treated. Unfortunately,
mechanisms of toxicity in this case remain incompletely
understood, although some studies were published that
suggested a mitochondrial toxic mechanism that resembles
that seen in FIAU.99,101–104

Other nucleoside analogs also exhibited significant toxicity
and forced cessation of their clinical trials as well. Lodenosine,
a purine NRTI (FDDA; 20-fluoro-20, 30-dideoxyadenosine) was
considered to be a potentially viable salvage NRTI for HIV/
AIDS; however, FDDA mitochondrial toxicity caused cardiac-
related death in rats in vivo and clinical trials with FDDA were
terminated prematurely because of serious adverse events.105

On the basis of these clinical and preclinical studies, it may be
concluded that the ‘pol g hypothesis’ is a principle of
toxicology in the therapeutic setting of HIV/AIDS and
antiretroviral therapy that requires testing.

As recently as 2012, the US FDA placed trials on hold or
warned manufacturers of nucleotide analogs for hepatitis C:
BMS 986094, IDX184, and GS7977 because of cardiac toxi-
city events and death, as reported in The New York Times.106

These toxicities appear to be mitochondrially driven, but that
theory has not yet been proven conclusively. Other
investigators have suggested that the target with this class
of compounds may be the mitochondrial RNA polymerase,
POLRMT.107

TELOMERES AND HIV/AIDS
Telomeres cap the ends of chromosomes and consist of
hexameric TTAGGG repeats and the protective ‘shelterin’
protein complex.108,109 Telomerase is a ribonucleoprotein
consisting of a reverse transcriptase (TERT) and its RNA
moiety (TERC). An ‘end replication problem’ causes
telomeres to shorten during each replication cycle to yield
persistent DNA damage and growth arrest (senescence) and
limited regenerative capacity of tissues. Its expression causes
cellular immortality. Although shortening and/or damage to
telomeres is associated with proliferative arrest of cells
in vitro, it remains unclear how accurately these diseases
recapitulate the processes of tissue aging in humans.

All of these enzymes exhibit some evidence of reverse
transcription. In the case of HIV-1 RT, this enzyme is capable
of catalyzing tRNA-primed DNA synthesis, (� ) strand
transfer, central polypurine tract-primed (þ ) DNA synth-
esis, (þ ) strand transfer, and ultimately bidirectional DNA
synthesis (reviewed in Le Grice110). Also HIV-1 RT is capable
of continuous and processive nucleotide addition; however,
stable complex formation is not involved.111,112

Telomerase has been considered the premier eukaryotic RT
with putative roles in mitochondrial aging and oxidative
stress, aging, and various ‘degenerative diseases.’14,113

Telomerases, including TERT, possess the ability to perform
‘repeat addition processivity.’ As such, TERT repetitively
reverse transcribes a relatively short RNA template. For
processive DNA synthesis to occur, the 30 end of the ssDNA
substrate must pair with the telomerase RNA template that
creates a DNA–RNA heterodimer. This is reverse transcribed
for synthesis of one of the telomeric repeats. DNA synthesis
on the same substrate is followed by realignment of the
template and repetition of the process.

Mutations reported in TERT have indicated that pro-
cessivity per se is important and that human TERT is more
processive than TERT from some other species.114 Although
it is thought to be present in many mammalian tissues, TERT
is present primarily in germline cells and is less abundant in
mitotically quiescent cells. Experimental evidence suggests
that absence of telomerase activity in mice is necessary for
telomere length maintenance, but not tumor formation in
mice.115,116

In vivo experimental systems have been useful to explore
mechanisms of aging. Genetically engineered mice that are null
for telomerase have been used to examine the role of the
enzyme in proliferation and sustainability of neoplastic cells.117

Others have used knockouts of TERC to refine the roles of stem
cells in terminally differentiated, mitotically quiescent
cells.113,118 A relationship between mitochondrial compromise
at the level of mtDNA replication defects, TERT inhibition by
NRTIs, and resultant telomere dysfunction suggests that a
shared mechanism may occur in aging that involves defects in
both mitochondrial function and telomere biology. It
underscores a relationship between these theories and the
observed premature aging that is seen in HIV/AIDS.14,119

TELOMERASE AND HIV/AIDS
Telomerase inhibition has been considered a possible me-
chanism by which antiretroviral treatment in HIV/AIDS
causes accelerated aging. At least part of the reasoning behind
this hypothesis stems from the fact that NRTIs are known
inhibitors of HIV-1 RT, and NRTIs inhibit eukaryotic pol g
(the mtDNA replicase that also has RT activity).120,121 Early
in the HIV/AIDS epidemic, it was discovered that the effect
of NRTIs, including AZT, caused progressive telomere
shortening in immortalized B- and T-cell lines.122 More
recently, an inhibitory effect of NRTI phosphates on human
peripheral blood mononuclear cell TERT indicated that many
phosphorylated NRTIs (including lamivudine, abacavir,
zidovudine, emitricitabine and particularly the nucleotide
analog tenofovir) were inhibitors of TERT.44 TERT activity is
vital to telomerase activity and because of the key role of
telomerase in aging theories, it was hypothesized that this
inhibition could contribute to the premature aging in HIV/
AIDS, and help promote the looming epidemic of premature
aging in that population.
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Conclusions vary on the importance of TERT activity in
HIV/AIDS, and its cellular effects may relate in part to either
the cell type, subcellular localization, or both. In vitro studies
revealed that macrophages (monocyte-derived) when infected
with HIV-1 resulted in induction of telomerase activity. These
macrophages showed less DNA damage after in vitro oxidative
stress and may suggest a viral survival strategy that includes
making macrophages better suited for survival and thus
fostering viral persistence.123 Evidence also supports decreased
TERT activity to be associated with trans-endothelial migra-
tion of HIV-1-infected U937 cells. Senescence of brain
endothelial cells may worsen many barrier-related functions
within the brain and predispose to HIV-1-related inflam-
matory effects.124 Aside from cell type, bona fide subcellular
localization of TERT may be crucial to its function.

MITOCHONDRIA, TERT, AND HIV/AIDS
Mitochondrial localization of TERT has been identified by
Santos in Van Houten’s group at NIEHS and strengthens the
importance of TERT in mitochondrial dysfunction through
inhibition of both TERT and pol g in the mitochondrial
matrix (Figure 2).125 That discovery first suggested that
mtDNA repair increased after 6 h in fibroblasts transfected
with TERT, however, mtDNA suffered substantial damage
and could support apoptosis. Because of its inhibition by
AZT triphosphate another toxic mechanism for aging
through TERT inhibition in this compartment may contri-
bute pathogenetically as well,125,126 further underscoring the
relationship between TERT inhibition and pol g inhibition as
integral dysfunctional processes (Figure 2).

From a toxicological perspective, the binding of TERT to
mtDNA protects against ethidium bromide–induced damage.127

TERT increases overall ETC activity, which is most pronounced
at complex I. Moreover, mitochondrial ROS are increased after
genetic ablation of TERT by shRNA.127 Taken together, this
further reinforces the relationship between mitochondrial
dysfunction and aging. Other data indicate that in mice that
are null for TERT or TERC, there is repression of peroxisome
proliferator-activated receptor g, coactivator 1a and b (PGC-1a
and PGC1-b), which suggests mechanistic links exist between
metabolic function and aging that warrant further study the
setting of HIV/AIDS.14,119

Recent evidence associates inhibition of TERT by a num-
ber of NRTI triphosphates; other evidence suggests telomere
shortening may result from AZT administration to the dam
that may have effects on fetal nuclear DNA, suggesting a
nuclear telomeric dysfunctional event that may have cyto-
plasmic and mitochondrial implications.45,123,128–135 Despite
a role for telomere shortening and TERT inhibition, there has
not been a direct connection documented between
mitochondrially localized TERT and NRTI toxicity.

OTHER ANTIRETROVIRAL SIDE EFFECTS: AGING AND PIs
Premature aging syndromes that clinically appear as
accelerated aging in tissues include Werner’s and

Hutchinson–Gilford Progeria syndromes (HGPS). A-type
lamins are nuclear proteins required for the structural and
functional integrity of the nucleus. Lamin A is translated as a
polypeptide precursor. Mature lamin A is generated after
several maturation steps, including C-terminal farnesylation
and its removal by proteolytic cleavage.136 Mutations in the
genes responsible for these premature aging diseases result in
increased DNA damage, particularly at telomeres, addressed
below. Defective maturation of prelamin A is a principal
mechanism underlying premature aging as seen in HGPS.136

Experimental evidence in vitro and in vivo indicates that
retention of the farnesylated residue in partially processed
prelamin A confers toxic properties.137,138 Conversely, a
premature aging phenotype in mice is attenuated using
inhibitors of farnesylation of prelamin A.139–143

Lamin defects also result as a side effect of antiretroviral
PIs (used to inhibit the protease of HIV responsible for viral
maturation). Two widely used PIs for HIV-1, indinavir and
nelfinavir, impede prelamin A maturation in vitro in adipo-
cytes. They induce nuclear alterations similar to those ob-
served in LMNA-mutated fibroblasts and cause prelamin A
accumulation as seen in premature senescence.144 Thus,
antiretroviral therapy combinations likely contribute to aging
through a mechanism similar to prelamin A accumulation as
well as through oxidative stress.58,144 These observations
argue for previously unrecognized relationship between a PI
(used in HAART) and the development of disease-identifying
characteristics of senescence in tissues in HIV/AIDS.144

Despite their increasing use in HIV/AIDS, side effects of in-
tegrase inhibitors do not directly appear to be involved in the
aging mechanisms described above.145 This could relate to the
fact that they have only recently been brought into the pharma-
copoeia. Evidence exists for a side effect of dyslipidemia, which
could be considered a risk factor for increased cardiovascular
disease, but are generally acceptable for clinical use.145,146

SUMMARY AND PROSPECTS
The aging population with HIV/AIDS has grown because of
HAART’s therapeutic success and improved patient care,
leading to a shift in the number of survivors within the
population of HIV/AIDS patients. At present, it remains to be
determined whether the root cause of this demographic change
is premature aging, ‘unanticipated’ effects of therapeutic
success, or some other factor(s). It is clear that therapeutic
side effects and effects of HIV-1 infection together must be
considered in the pathogenesis of aging in this population, as
antiretroviral therapy is linked directly to the infection.

Mechanisms of premature aging in HIV/AIDS may mimic
some of those operative in non-AIDS conditions, and some
mechanistic inferences may be made due to telomerase in-
hibition and other events related to HIV/AIDS therapeutic
side effects. Carefully controlled prospective clinical studies
will assure that meaningful data are obtained to dissect the
clinical nature of each condition that relates HIV/AIDS to
aging. Moreover, mechanistic insights will result from basic
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studies that explore subcellular events in these intersecting
illnesses or complex biological conditions like aging. Taken
together, both approaches will illuminate the mechanistic
relationship between HIV/AIDS and aging, offer possible ways
to therapeutically intervene, and promote human health.
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