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� A divergent HBV species termed CMHBV was discovered in

Brazilian capuchin monkeys.

� CMHBV and the related WMHBV use the same receptor as
HBV to infect human cells.

� CMHBV may cause chronic hepatitis B, potentially enabling
new animal models.

� Primates may have been carrying HBV-related viruses for
millions of years.

� New World HBV genotypes were likely introduced during
the peopling of the Americas.
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Lay summary
The origins of HBV are unclear. The new
orthohepadnavirus species from Brazilian
capuchin monkeys resembled HBV in
elicited infection patterns and could in-
fect human liver cells using the same
receptor as HBV. Evolutionary analyses
suggested that primate HBV-related
viruses might have emerged in African
ancestors of New World monkeys mil-
lions of years ago. HBV was associated
with hominoid primates, including hu-
mans and apes, suggesting evolutionary
origins of HBV before the formation of
modern humans. HBV genotypes found in
American natives were divergent from
those found in American monkeys, and
likely introduced along prehistoric human
migration. Our results elucidate the evo-
lutionary origins and dispersal of primate
HBV, identify a new orthohepadnavirus
reservoir, and enable new perspectives for
animal models of hepatitis B.
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adnaviruses and NHP, and an Old World origin of the divergent
HBV genotypes F/H. The identification of a novel primate hepad-
navirus offers new perspectives for urgently needed animal
models of chronic hepatitis B.
Lay summary: The origins of HBV are unclear. The new ortho-
hepadnavirus species from Brazilian capuchin monkeys resem-
bled HBV in elicited infection patterns and could infect human
liver cells using the same receptor as HBV. Evolutionary analy-
ses suggested that primate HBV-related viruses might have
emerged in African ancestors of New World monkeys millions
of years ago. HBV was associated with hominoid primates,
including humans and apes, suggesting evolutionary origins of
HBV before the formation of modern humans. HBV genotypes
found in American natives were divergent from those found in
American monkeys, and likely introduced along prehistoric
human migration. Our results elucidate the evolutionary origins
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Background & Aims: All known hepatitis B virus (HBV) geno-
types occur in humans and hominoid Old World non-human
primates (NHPs). The divergent woolly monkey HBV (WMHBV)
forms another orthohepadnavirus species. The evolutionary ori-
gins of HBV are unclear.
Methods:We analysed sera from 124 Brazilian monkeys col-
lected during 2012–2016 for hepadnaviruses using molecular
and serological tools, and conducted evolutionary analyses.
Results:We identified a novel orthohepadnavirus species in
capuchin monkeys (capuchin monkey hepatitis B virus
[CMHBV]). We found CMHBV-specific antibodies in five animals
and high CMHBV concentrations in one animal. Non-
inflammatory, probably chronic infection was consistent with
an intact preCore domain, low genetic variability, core deletions
in deep sequencing, and no elevated liver enzymes. Cross-
reactivity of antisera against surface antigens suggested anti-
genic relatedness of HBV, CMHBV, and WMHBV. Infection-
determining CMHBV surface peptides bound to the human
HBV receptor (human sodium taurocholate co-transporting
polypeptide), but preferentially interacted with the capuchin
monkey receptor homologue. CMHBV and WMHBV pseudo-
types infected human hepatoma cells via the human sodium
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taurocholate co-transporting polypeptide, and were poorly neu-
tralised by HBV vaccine-derived antibodies, suggesting that
cross-species infections may be possible. Ancestral state recon-
structions and sequence distance comparisons associated HBV
with humans, whereas primate hepadnaviruses as a whole were
projected to NHP ancestors. Co-phylogenetic analyses yielded
evidence for co-speciation of hepadnaviruses and New World
NHP. Bayesian hypothesis testing yielded strong support for
an association of the HBV stem lineage with hominoid ances-
tors. Neither CMHBV nor WMHBV was likely the ancestor of
the divergent human HBV genotypes F/H found in American
natives.
Conclusions: Our data suggest ancestral co-speciation of hep-
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Introduction
The hepatitis B virus (HBV) is one of the most important human
pathogens, causing at least 680,000 deaths each year globally
caused by chronic infection resulting in liver cirrhosis and hep-
atocellular carcinoma.1 HBV is the prototype species of the
genus Orthohepadnavirus in the family Hepadnaviridae. In
humans, HBV comprises 10 genotypes named A–J.2 Additional
HBV genotypes infect Old World non-human primates (NHPs),
including chimpanzees, gorillas, orangutans, and gibbons.3

Infection of humans with HBV genotypes from NHPs has not
been described yet. By contrast, NHPs can carry human HBV
genotypes and HBV genotypes from other NHP species, illustrat-
ing the potential of primate HBV to cross the species barrier.3

Different from other major blood-borne viruses, such as HIV,
there is no evidence for an evolutionary origin of human HBV
from viruses carried by Old World NHPs.4 Similarly, the evolu-
tionary origins of the divergent human HBV genotypes F and
H associated with American natives inhabiting Alaska and Latin
America are unknown.5

In the absence of known animal reservoirs for human HBV
strains, the eradication of hepatitis B through universal vaccina-
tion and antiviral treatment might be possible.6 We recently
described a New World bat hepadnavirus that could infect
human hepatocytes and was not neutralised by hepatitis B
vaccine-induced antibodies.7 Whether this bat virus may infect
humans remains open, because direct contact between humans
and bats (e.g. from hunting of bats as bushmeat) is rare in the
New World.8 By contrast, contact between indigenous American
populations and NHP is more intense, including consumption of
NHP, their keeping as pets, and the encroachment of NHP to
human dwellings because of destruction of their natural habi-
tats.9 Additionally, the genetic relatedness of humans and NHP
facilitates cross-species infections.10

The only other known primate hepadnavirus species beyond
HBV, termed woolly monkey HBV (WMHBV), was described in
1998 from captive woolly monkeys (Lagothrix lagotricha).11

Although the WMHBV forms a phylogenetic sister species to
HBV, its description in a confined setting challenged definitive
assertions on the role of New World NHPs for the evolutionary
origins of HBV. Sampling of NHPs is difficult for ethical and
technical reasons, and in consequence, South American NHPs
are among the most understudied primate populations in terms
of the infectious agents they may carry.12 There are only four
studies on HBV in New World NHPs that collectively analysed
only about 100 animals.3

Here, we screened New World NHPs for hepadnaviruses and
identified a novel HBV species in capuchin monkeys, which was
highly divergent from WMHBV. Evolutionary and functional
analyses enabled new hypotheses for primate HBV evolution,
showed important similarities between the infection patterns
of the novel hepadnavirus and HBV, and pointed at potential
transmissibility of the novel HBV to humans.

Materials and methods
Screening for hepadnaviruses, cloning, and infection assays
were done, as described previously.7 Evolutionary analyses
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were done in a maximum likelihood and Bayesian framework
using MEGA6 and BEAST.13,14 Co-phylogenetic analyses were
done using PACo, ParaFit, and CoRe-PA.15–17 Ethical approval
was obtained from Brazilian and German authorities.

For further details regarding the materials used, please refer
to the CTAT table and supplementary information.

Results
Identification of a novel primate HBV
During 2012–2016, sera were sampled from 124 NHPs belong-
ing to at least 10 species in three zoos and two shelters receiv-
ing confiscated animals from illegal trafficking in the state of
Bahia, north-eastern Brazil (Fig. 1A). As shown in Table S1, most
sampled animals were robust capuchin monkeys (genus Sapa-
jus, family Cebidae). Because of frequent hybridisation events
between different Sapajus species (Fig. 1B) and because of ani-
mal trafficking over long distances, not all species could be
unambiguously identified.18 An adult female capuchin monkey
kept in an animal shelter for about 1 year before sampling
tested positive in a broadly reactive and highly sensitive Hepad-
naviridae PCR assay,7 whereas all other animals were PCR nega-
tive. The hepadnavirus-positive animal belonged to the species
Sapajus xanthosternos (Table 1). This animal showed unspecific
signs of disease, including thinness, lethargy, and mild dehydra-
tion, and died about 6 months after sampling. Unfortunately, no
follow-up specimens were available. Sapajus xanthosternos is
classified as ‘‘critically endangered” because of severe popula-
tion decline and habitat loss,19 and can currently only be found
in small protected areas that overlap with our sampling sites
(Fig. 1B).

Genomic characterisation of the novel hepadnavirus
The full genome of the virus termed capuchin monkey HBV
(CMHBV; GenBank accession number KY703886) was amplified
by sets of overlapping PCRs directly from serum, as described
previously,7 and sequenced. The CMHBV genome spanned
3,182 nucleotides, and showed the typical length and organisa-
tion of an orthohepadnavirus genome, including four overlap-
ping open reading frames encoding the predicted surface (S),
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polymerase (Pol), core (C), and X proteins; conserved direct
repeats; and the conserved RNA secondary structure epsilon
involved in hepadnavirus replication (Fig. 2A and Fig. S1A).
The CMHBV was equidistant from all other primate hepad-
naviruses with a sequence distance averaged over the whole
genome ranging between 20.4% (HBV genotype C) and 22.3%
(HBV genotype F; Table 2). CMHBV was not significantly closer
to WMHBV than to human and ape HBV (Fig. 2B). It significantly
resembled WMHBV only in the preS1 and X domains. No evi-
dence for genomic recombination involving the novel CMHBV
was found using recombination detection tools. In sum,
sequence distances exceeding the 20% threshold separating
the primate hepadnavirus species WMHBV and HBV and the
typical genome organisation confirmed the CMHBV as a new
orthohepadnavirus species.

Antigenic relatedness of HBV and New World monkey
hepadnaviruses
The predicted antigenic loop of CMHBV showed conserved loca-
tion and length compared to HBV and WMHBV, including eight
cysteine residues that are essential for the stability of the con-
formational surface epitopes (Fig. S1B). To confirm the antigenic
relatedness among CMHBV, WMHBV, and HBV, we compara-
tively analysed the reactivity of different antisera with the S
proteins of these hepadnaviruses. As expected, a polyclonal rab-
bit antiserum (pAb) against the conventional HBV vaccine
(HBvaxPRO) and two monoclonal (mAb) anti-HBs antibodies
showed reactivity against the three hepadnavirus S proteins in
an immunofluorescence assay (IFA) (Fig. 2C). Compared to the
HBV S antigen (HBsAg), the WMHBsAg showed similar reactiv-
ity with the antisera, whereas a weaker signal was observed for
the CMHBsAg. Consistent with the low reactivity against HBV
antisera, a diagnostic quantitative HBsAg assay showed strongly
reduced reactivity with secreted CMHBsAg (Fig. S1C).

Resurrection of the CMHBV for serological investigation
The full CMHBV genome was cloned into an overlength expres-
sion vector, as described previously,7 and used to transfect hep-
atoma cell lines expressing CMHBV proteins for serological
analyses in an IFA. Whereas the CMHBV DNA-positive animal
tested negative for CMHBV antibodies, five DNA-negative capu-
chin monkeys from the same sampling site tested positive for
antibodies, showing IFA endpoint titres between 1:40 and
1:5,120 (Table 1). Comparative testing of all sera using cell cul-
tures expressing overlength HBV constructs revealed only two

HBV IFA-positive animals, and anti-HBV titres were at least two-
fold and up to 64-fold lower than anti-CMHBV titres, consistent
with cleared CMHBV infections in these animals. The cellular
location of the IFA reactivity pattern was consistent with the
typical anti-core reactivity pattern involving the nucleus and
cytoplasm, and its specificity was confirmed by co-localisation
using control antisera (exemplified in Fig. 2D). No animal tested
positive in IFA using expression constructs for the CMHBV or
HBV S antigen, which is comparable to the low production of
anti-S antibodies frequently observed in HBV-infected humans
after HBsAg clearance.20 The occurrence of CMHBV antibody-
positive animals during the whole observation period (2012–
2016), including a free-ranging monkey, suggest maintenance
of CMHBV in the location. According to morphological and
genomic characteristics, CMHBV antibody-positive animals
belonged to at least three different capuchin monkey species,

18 vol. xxx j xxx–xxx 3
virus species discovered in capuchin monkeys sheds new light on the evolution of primate

https://doi.org/10.1016/j.jhep.2018.01.029


including Sapajus robustus, S. apella, and S. xanthosternos
(Table 1).

CMHBV infection patterns
All five CMHBV antibody-positive animals were apparently
healthy. Whether the signs of disease in the DNA-positive ani-
mal were caused by infection with the CMHBV, and whether
it had an acute or chronic CMHBV infection status remain
unknown. In any case, the virus had an intact preCore domain,
suggesting production of hepadnaviral e-antigen (eAg). In
human HBV, the eAg-positive, non-inflammatory phase is
characterised by a high viral load and low mutation rate in
the intra-patient quasispecies correlating with limited immune
pressure.21 Comparable to HBV, the CMHBV load was high with
9.2 � 108 genome copies per millilitre. A total of 57 genomic
sites were identified with at least 1% variation in deep sequenc-
ing, which is comparable to humans chronically infected with
HBV (Fig. 2E and detailed in Table S2).22 Almost all non-
synonymous substitutions (dN) in the Pol mapped to the pre-
dicted spacer region, which may be partially dispensable for
hepadnavirus replication,23 implying limited impact of these
dN on CMHBV replication efficiency. In agreement with limited
antibody-mediated pressure, only two dN occurred in the anti-
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genic loop at CMHBV SHBs residues 111 (P/S) and 160 (A/V)
at low frequencies of 1–2% (Fig. S1B). Several reads containing
two large deletions of up to 78 and 150 nucleotides were
observed in the C open reading frame (Fig. 2E). The occurrence,
location, and size of these C deletions were consistent with the
deletion patterns found in chronic hepadnavirus infections of
humans and woodchucks.24,25 In summary, genomic patterns
were consistent with a non-recent chronic replicative infection.
Lack of anti-C antibodies may appear in conflict with a chronic
infection status, and instead suggest an acute infection preced-
ing seroconversion. However, absence of a detectable anti-C
antibody response has been described in vertically infected
chronic HBV carriers caused by foetal exposure to the
immunomodulatory eAg,26 pointing at a potential vertical infec-
tion. Finally, biochemical markers of systemic infection (lactate
dehydrogenase) and liver damage (gamma-
glutamyltransferase) were compared between the five CMHBV
antibody- and the single CMHBV DNA-positive, as well as 53
CMHBV-negative animals, for which sufficient sample volumes
were available. Lactate dehydrogenase and gamma-
glutamyltransferase levels were within the range described for
capuchin monkeys,27 and no significant differences were

Fig. 2. CMHBV infection patterns. (A) CMHBV genomic organisation. (B)
Genomic identity between the CMHBV and reference hepadnaviruses. (C)
Staining of primate hepadnavirus small surface p+roteins expressed in Huh7
cells by anti-HBs sera. (D) Co-localisation of signals of rabbit control serum
and monkey serum (animal M5). (E) Polymorphisms in the CMHBV near-full
genome; red, non-synonymous; black, synonymous. Del, deletion (del 1, C
positions 219–296; del 2, C positions 244–393). (F) LDH and GGT activity in
units (U)/L; n = 6 for CMHBV-positive and n = 53 for CMHBV-negative
animals; red, CMHBV DNA-positive animal; line, median; p-values refer to
Mann Whitney-U tests. AGL, antigenic loop; CMHBV, capuchin monkey
hepatitis B virus; GGT, gamma-glutamyltransferase; HBV, hepatitis B virus;
LDH, lactate dehydrogenase; WMHBV, woolly monkey hepatitis B virus.
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sNtcp compared to the hNTCP (p <0.05; Fig. 3E). Of note, the
CMHBV myr-preS1 peptide-mediated reduction of TC transport
by the hNTCP was still within the nanomolar range (Fig. 3E).
This was consistent with the ability of CMHBV surface proteins
to confer infection of human cells via the hNTCP (Fig. 3B).

Phylogenetic relationships of the novel CMHBV
In a maximum likelihood (ML) phylogenetic reconstruction of
the full genomes of primate hepadnaviruses, CMHBV clustered
with WMHBV with high statistical support, forming a basal sis-
ter lineage to the HBV genotypes (Fig. 4A and Fig. S3). The same
topology was observed upon inclusion of non-primate ortho-
hepadnaviruses into the phylogenetic analysis (Fig. S4A). These
phylogenetic relations corroborated the existence of an
expanded primate hepadnavirus clade containing HBV and rel-
atively more diversified viruses from New World NHPs.

Co-segregation of hepadnaviruses and their hosts
Recent evidence suggests that orthohepadnaviruses may have
co-evolved with their hosts.34 Indeed, formal co-phylogenetic
analyses comparing the overall agreement between virus and
host trees15,16 yielded statistically significant evidence (p
<0.005) for co-segregation between primate hepadnaviruses
and their hosts. However, of the 19 individual host–virus asso-
ciations within the co-phylogenetic analysis, only the associa-

er primate hepadnaviruses.*

CMHBV
X (aa)

CMHBV complete
genome (nt)

WMHBV complete
genome (nt)

20.5
28.7–29.3 20.5
30.7–34.0 21.1–21.8 21.5–22.5
30.1–31.6 21.2–21.7 21.6–22.0
29.4–31.4 20.6–20.9 21.2–21.9
30.1–35.9 20.5–21.8 21.3–23.1

34.6–37.9 20.6–21.5 21.8–22.2
28.8–32.0 20.6–21.3 21.4–22.4
30.7–35.3 20.4–21.1 21.3–22.5
30.7–34.0 21.2–21.7 21.5–22.6

32.7 22.0 22.1–22.2
33.3–37.3 21.7–22.3 22.7–23.4

34.0 21.5 22.0–22.1
32.7 21.7 23.1–23.2

32.0–33.3 20.5–20.8 22.0–22.2
35.9 21.6 22.6–22.8

28.8–37.9 20.4–22.3 21.3–23.4
28.7–37.9 20.4–22.3 20.5–23.4
32.9 (1.9) 21.6 (0.4) 22.1 (0.4)

lumn. Core open reading frame included the preCore domain. aa, amino acid; CMHBV,
is B virus.
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observed between groups (Fig. 2F), which is compatible with a
non-inflammatory CMHBV infection predicted by genomic
comparisons.

CMHBV receptor interactions
Attachment to the HBV receptor, sodium taurocholate (TC) co-
transporting polypeptide (NTCP), and entry into hepatocytes
are mediated by two subdomains of the hepadnaviral preS1
domain.28 The NTCP-interacting preS1 domains of CMHBV,
WMHBV, and HBV were highly conserved (Fig. 3A), suggesting
similarities of cellular entry processes between these primate
orthohepadnaviruses. Hepatitis delta virus (HDV) pseudotyped
with the CMHBV and WMHBV S proteins (HDVCMHBV and
HDVWMHBV) could infect human hepatocytes expressing NTCP
from either human (hNTCP) or Tupaia origin (Tupaia is a surro-
gate animal model for HBV infection), albeit less efficient than
HDVHBV (Fig. 3B). The addition of high amounts of HBV
vaccine-induced anti-HBs IgG blocked the HDVHBV infection
efficiently (>99.5%), whereas HDVCMHBV and HDVWMHBV infec-
tions were only reduced by about 40% (Fig. 3C). The fact that
even very high amounts of anti-HBs could not efficiently neu-
tralise HDVCMHBV and HDVWMHBV was consistent with the anti-
genic differences between the S proteins of CMHBV and
WMHBV compared to the HBV vaccine strain (Fig. S1B) and with
suboptimal vaccine-induced protection against heterologous
serotypes in humans infected with HBV.29–31

The capuchin monkey NTCP homologue was unknown before
this study. To assess the host associations of CMHBV compara-
tively, we characterised the NTCP homologue of a capuchin
monkey (Sapajus Ntcp [sNtcp]). The sNtcp and the hNTCP dif-

Table 2. Percentage sequence distance between CMHBV, WMHBV, and oth

CMHBV
core (aa)

CMHBV
LHBs (aa)

CMHBV
Pol (aa)

CMHBV
WMHBV 7.7–8.1 20.3 26.4–26.6
ChHBV 8.1–12.9 21.1–23.1 26.9–28.4
GoHBV 8.6–9.5 21.1–21.3 27.4–27.9
OrHBV 7.1–8.6 21.1–22.6 27.0–28.1
GbHBV 7.1–12.4 19.8–26.0 25.8–28.4
HBV
A 9.5–12.4 22.1–24.7 26.6–28.1
B 9.5–14.8 23.4–24.7 26.2–27.9
C 9.0–12.4 21.1–23.1 27.5–28.6
D 10.5–14.3 23.9–24.9 27.5–29.0
E 16.2 23.9 28.6
F 10.0–10.5 25.2–26.5 27.2–28.1
G 9.5 22.9 26.7
H 11.0 25.2 27.6
I 9.5–10.0 23.1–23.4 26.9–27.5
J 8.6 23.4 26.9
[A–J] 8.6–16.2 21.1–26.5 26.2–29.0

Overall 7.1–16.2 19.8–26.5 25.8–29.0
Mean (SD) 9.2 (1.8) 22.5 (1.3) 27.5 (0.6)
* Highlighted in bold: lowest and highest distances (i.e. non-identity) within each co
capuchin monkey hepatitis B virus; nt, nucleotide; WMHBV, woolly monkey hepatit
fered by 29 aminoacid residues (8.3%, Fig. S2). Since viral bind-

ing and entry compete with NTCP-mediated bile-acid
transport,32 we investigated the ability of sNtcp to mediate TC
transportation. The sNtcp showed similar transport activity of
TC compared to the hNTCP (Fig. 3D). Binding of HBV and
WMHBV preS1 peptides to the hNTCP correlates with reduced
TC transport in a quantitative manner.32,33 Consistent with the
host association of CMHBV, the CMHBV myr-preS1 peptide
showed significantly stronger inhibition of TC transport by the
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tions of CMHBV and WMHBV with their hosts were highly
significant (p = 0.005 and p = 0.014, respectively; red lines in
Fig. 4B). For hominoid primates (apes and humans) and their
hepadnaviruses, only a clade composed of HBV strains infecting
Nomascus gibbons showed statistically significant co-
segregation (p <0.05; Fig. 4B). In a confirmatory event-based
co-phylogenetic reconstruction,17 co-speciation was consis-
tently observed for CMHBV and WMHBV and their hosts. By
contrast, host-independent virus evolution was predominant
among HBV. This included numerous duplication events (i.e.
host-independent virus speciations) and sorting events (i.e. fol-
lowing host speciation, viruses remain on only one of the result-
ing species [Fig. 4C]). In sum, evidence for co-evolution was
found chiefly for deep-branching hepadnaviruses from New
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World NHPs, but less so for HBV strains infecting humans and
hominoid primates. Therefore, co-evolution does not provide a
likely explanation for the current phylogenetic relationships of
HBV in hominoid primates.

Reconstruction of ancestral host associations
Based on host associations in a Bayesian phylogeny, ancestral
state reconstruction (ASR) at tree nodes was conducted. The
most recent common ancestor (MRCA) of HBV was projected
to a human host, rather than an NHP (posterior probability,
0.84) (Fig. 4D). This reconstruction was consistent with a higher
patristic distance of HBV strains infecting humans (15.0%) than
those infecting hominoid NHPs (10.9%). Only upon inclusion of
CMHBV and WMHBV, hepadnavirus patristic distance was
higher in NHPs than in humans with 23.1% (Fig. 4E). This was
consistent with the projection of a NHP at the root of the pri-
mate hepadnavirus tree in ASR, albeit with lower statistical sup-
port (posterior probability, 0.72). Without the CMHBV, ASR
yielded equal probability for a human or a NHP host at the root
of the primate hepadnavirus tree (Fig. S4B), illustrating the rel-
evance of CMHBV for the understanding of primate hepad-
navirus origins. In sum, primate orthohepadnaviruses were
projected to NHP ancestors, but less so to the HBV stem lineage.

Hypothesis testing of HBV origins
To assess at what time HBV ancestors may have arisen within
Old World primates (the Catarrhini), hypothesis testing was
done in a time-calibrated Bayesian framework. In brief, the
MRCA of HBV was calibrated by five different priors describing
the origin of diverse primate ancestors. These priors included
the origin of the Catarrhini (25.1 million years ago [mya];35

Node 1 in Fig. 5A), of the Hominoidea (17.4 mya;35 Node 2), of
the genera Homo and Pan (5.54 mya;36 Node 3), of the genus
Homo (2.9 mya;37 Node 4), and of anatomically modern humans
(AMHs; 0.124 mya;38 Node 5). Details of all calibrations are pro-
vided in the Supplementary methods.

A relatively recent origin of HBV in AMH was not supported
by these analyses, since all calibrations assigning MRCAs of pri-
mate ancestors were supported by significantly higher Bayes
factors (BFs; commonly expressed as twice the natural loga-
rithm [2 ln BF] in probabilistic theory;39 Fig. 5A). The strongest
support was found for an origin of HBV ancestors in Hominoidea
(2 ln BF, 9.6–87.4 compared to all priors). Several confirmatory
analyses using identical settings without the novel CMHBV also
opposed an origin of HBV in AMH, but yielded considerably
lower statistical support by up to five orders of magnitude for
different calibrations (Fig. S4D), highlighting the importance of
CMHBV for reconstructions of HBV origins.

In sum, evolutionary analyses supported an ancient and
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potentially co-evolutionary relationship between primate hep-
adnaviruses and NHP hosts, and strongly suggested an origin
of HBV ancestors in Hominoid Old World primates, preceding
the formation of the human stem lineage.

Discussion
We discovered a new primate hepadnavirus species termed
CMHBV from capuchin monkeys, and investigated its infection
patterns and evolutionary history.

Our data suggest that catarrhine and platyrrhine primates
have been carrying hepadnaviruses for millions of years, which

disfavours a previous hypothesis assuming a split between
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hominoid HBV and hepadnaviruses from New World NHPs only
several thousand years ago.40 Similarly, an origin of all primate
hepadnaviruses in New World monkeys is not supported by our
results. A recent analysis consolidated an African origin of Pla-
tyrrhini and their arrival in South America at least 36 mya.41

Our phylogenetic evidence is thus compatible with the exis-
tence of ancestral hepadnaviruses in African pre-platyrrhines
introduced into South America during its transatlantic colonisa-
tion42 (Fig. 5B). The strong evidence for an association of the
HBV stem lineage with hominoid ancestors is compatible with
the apparent absence of divergent HBV genotypes in cercopithe-
coid Old World primates.43 Whether other hepadnavirus species
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may exist in extant cercopithecoid monkeys requires further
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occurrence of genotype F in Polynesia. However, a hypotheti-
cal introduction of F/H ancestors into the Americas via the Poly-

ciation of genotypes F and H is best illustrated by the detection
of a near-contemporary HBV genotype C sequence in a Korean
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investigation, since the vast majority of primate species has not
been investigated for hepadnaviruses.3

Whether indeed extant HBV genotypes infecting hominoid
apes are the result of human-to-NHP transmission events,44 as
predicted in our analyses, or whether this apparent association
with humans resulted from incomplete lineage sorting of HBV
genotypes within hominoid NHPs remains to be determined in

hepatitis B virus; Gt, genotype; HBV, hepatitis B virus; NHP, non-human
primate; WMHBV, woolly monkey hepatitis B virus.
studies investigating whether divergent hepadnaviruses exist

in hominoid NHPs.

One of the major obstacles to reconcile the evolutionary his-
tory of humans and HBV has been the enigmatic origin of the
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New World genotypes F and H.2 Contrary to previous recon-
structions,45 neither the CMHBV nor the WMHBV appear to be
direct evolutionary ancestors of HBV genotypes F and H. Our
data thus suggest non-American origins of these divergent
HBV genotypes. Recent evidence supports that human ancestors
populating America were geographically isolated on the Berin-
gian land bridge for about 9,000 years during the past glacial
maximum.46 It is conceivable that this relatively small group
of people may have carried ancestors of HBV genotype F/H.
The latter split into genotypes F and H47 might have taken place
during the rapid southward dispersal into the Americas46

(Fig. 5B). HBV genotype F/H precursors in the Old World may
have disappeared because of extinction events during the
human dispersal history, as illustrated by the disappearance of
HBV genotype C in Western Asia.2

Of note, recent evidence supports a potential pre-Columbian
contact between Polynesians and South American natives about
3–5 thousand years ago,46 which may be compatible with the

48
nesian route fails to explain the occurrence of genotype F in
Alaska, and implies a relatively short time for the split into
genotypes F and H and into four distinct F sub-genotypes. The
slow long-term evolutionary rate of HBV challenging rapid spe-
mummy from the 16th century.2,49 However, more than one
introduction of genotype F/H ancestors into the Americas can-
not be excluded at the current knowledge of the human disper-
sal history.

Our data on entry of viral pseudotypes into human hepato-
cytes and on interaction of CMHBV peptides with the human
HBV receptor may imply a zoonotic potential of hepadnaviruses
circulating in New World NHPs. However, infection experi-
ments relying on full hepadnaviruses and primary human liver
cells will be required to permit definite conclusions on the zoo-
notic potential of CMHBV. Of note, third-generation HBV vacci-
nes containing preS1 epitopes50 might be more potent to
neutralise divergent hepadnaviruses, like CMHBV, efficiently,
highlighting an additional value of newer vaccine generations.

Chronic hepatitis B infection remains a major human disease
with no effective cure. Despite recent advances using transgenic
mice,51 research on hepatitis B cure is hampered by the lack of
suitable animal models for persistent HBV infection.52 Chal-
lenges to develop primate models for persistent hepatitis B
infection include ethical constraints on the usage of chim-
panzees, the endangered status of woolly monkeys, and non-
persistent infection with WMHBV in spider monkeys.52

Whether macaques may prove useful animal models for chronic
hepatitis B remains to be confirmed.53 Capuchin monkeys easily
breed in captivity54 and are among the most widely used New
World primates in biomedical research.55 Even though capuchin
monkeys have not been widely used as animal models in recent
infectious-disease research, pivotal studies on schistosomes and
herpesviruses illustrate the technical usability of these animals
for controlled infections.56,57 The novel CMHBV showed
preliminary evidence for the capacity to cause chronic infec-
tions and for a broad host range potentially facilitating infection
studies in non-endangered capuchin monkey species. Our find-
ings thus enable new perspectives to investigate HBV pathogen-
esis and cure.
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