

www.pei.de

Approaches for the Detection of Neuraminidase (NA)-Specific Antibodies in Sera from Humans and Animals

Ralf Wagner Paul-Ehrlich-Institut Section Viral Vaccines

Paul-Ehrlich-Institut

Section Viral Vaccines

Approaches investigated:

- **Use of specifically designed recombinant virus**
- **Chemical assay (WHO manual)**
- **Use of vaccine monobulks as target protein in Western blot**

MNT with Recombinant Influenza Viruses

Recombinant Influenza viruses generated by reverse genetics to decipher antibody specificities in sera from vaccinated (pandH1N1) ferrets by MNT

⇒ Schematic representation of recombinant viruses with distinct surface antigen configurations and resulting intended AB reactivities for application in MNT

⇒ Acceptor viruses for reverse genetics: A/FPV/Ro/34 (H7N1) (att. Mutant) and A/PR8/34 (H1N1)

Characterisation of Recombinant Influenza Viruses

Example: H9N1-FPV

Genotypic: rec. H9N1

RT-PCR amplication of segments by use of specific primers

Confirmation of genotype

- Surface AG-genes H9N1
- Internal genes of FPV (acceptor)

Phenotypic: Hemagglutinin-Identity

Western blot using HA-subtype specific antibodies

Federal Institute for Vaccines and Biomedicines

Section Viral Vaccines

Anti-H9-HA

Ferret Vaccination Study

Overall design of study:

Federal Institute for Vaccines and Biomedicines

Serological Data from Ferret Study – Day 0

HI- and MNT titer of all animals at day 0 (pre-vacc):

MNT by classical WHO protocol (1 day)

	Ferret	H1N2_FPV		H9N1_FPV		H1N1v_FPV		pdmH1N1v		Tost virus
	Nr.	HAI	MNT	HAI	MNT	HAI	MNT	HAI	MNT	iest virus
Animals for vaccination	165 Vaccine	20	5	40	5	20	5	5	5	
	166 Vaccine	20	5	40	5	40	5	5	5	
	167 Vaccine	28	-	14	5	10	5	5	5	
	168 Vaccine	20	5	40	5	14	5	5	5	
	169 Vaccine	5	5	40	5	20	5	5	5	
	170 Vaccine	5	5	5	5	5	5	5	5	
	171 Vaccine	20	5	40	5	20	5	5	5	
	172 Vaccine	12	-	14	5	-	5	5	5	
	173 Vaccine	-	5	-	5	40	5	-	5	
	177 Vaccine	7	5	10	5	20	5	5	5	
	178 Vaccine	10	5	20	5	20	5	5	5	
	179 Vaccine	-	-	-	-	-	-	-	-	
	180 Vaccine	14	5	24	5	20	5	5	5	
	182 Vaccine	5	5	14	5	20	5	5	5	
	183 Vaccine	7	5	28	5	57	5	5	5	
Control Animals	140 (-)	7	5	40	10	5	5	5	5	
	162 (-)	5	5	6	5	5	5	5	5	
	163 (-)	5	5	5	5	5	5	5	5	
	164 (-)	5	5	24	5	10	5	5	5	
	174 (-)	5	5	24	5	5	5	5	5	
	175 (-)	5	5	5	5	5	5	5	5	
	176 (-)	5	5	20	7	5	5	5	5	
	181 (-)	10	5	24	5	28	5	5	5	
	197 (-)	7	5	28	5	5	5	5	14	

HI- and MNT titer of vaccinated animals 1 week after 2nd dose:

MNT by classical WHO protocol (1 day)

Ferret	H1N2	H1N2_FPV		H9N1_FPV		/_FPV	pdmH1N1v		Tost virus
Nr.	HAI	MNT	HAI	MNT	HAI	MNT	HAI	MNT	
165 Vaccine	 2560	5120	24	5	2560	5120	10240	≥20480	
166 Vaccine	1280	1280	20	10	1280	1280	3620	5120	
167 Vaccine	 640	640	20	5	640	640	2560	3620	
168 Vaccine	 1280	1280	40	5	1280	1280	7241	3620	
169 Vaccine	 226	320	20	5	160	320	1280	1280	
170 Vaccine	 3620	5120	5	5	2560	5120	10240	14482	
171 Vaccine	 1280	1280	20	5	453	640	2560	2560	
172 Vaccine	2560	2560	20	5	1280	1280	10240	5120	
173 Vaccine	 1280	-	5	5	1280	1280	3620	7241	
177 Vaccine	 1280	640	5	5	640	640	1280	2560	
178 Vaccine	 640	1280	40	5	640	905	5120	5120	
179 Vaccine	 1810	2560	5	5	1810	2560	≥20480	14482	
180 Vaccine	320	640	5	5	320	320	1280	2560	
182 Vaccine	640	640	5	5	640	1280	5120	2560	
183 Vaccine	-	-	-	-	-	-	-	-	

Powerful immune response detectable against H1-HA in HI and MNT No response at all detestable against N1-NA (→MNT with H9N1) ⇒ Reactivity against H1N1 most probably solely due to H1-HA component

Alternative Assays for NA-specific Antibodies

Fetuin Sia Sia Fetuin **NA- activity** Sia Sia +by virus Sia Sia Sia Sia Gal Gal Gal Ga released (or other substrates desialylated Inhibited by Such as gangliosides) sialic acids protein **NA-specific AB Chemical conversion (WHO manual)** Fetuin conversion to formol-pyruvate by periodate oxidation formation of chromophore by TBA extraction of chromophore မ) လ peroxidase-labelled Lectin peanut agglutinin spectrophotometry Quantification with peroxidase substrate (ELISA) (also: Sandbulte et al., 2009)

Federal Institute for Vaccines and Biomedicines

Section Viral Vaccines

NA-AB Titer in Ferrets by "WHO"-Assay

Examples of original data

Federal Institute for Vaccines and Biomedicines

Comparison of measured anti-NA titers

	F	erret Se	ra		Human Sera			
Summary of data:		<u>MNT</u>	<u>anti-NA</u>			<u>MNT</u>	anti-N	
MNT vs anti-NA	D0	5	none		D0	5	none	
	D28	14480	125		D42	10240	5625	
	D0	5	none		D0	5	none	
	D28	2560	10		D42	2480	5000	
	D0	5	none		DO	5	none	
	D28	20480	80000		D42	20480	2500	
				1	D0	5	125	
					D42	3620	5000	

Conclusions from ferret study (H1N1):

Obviously, NA-specific antibodies are not easily captured in standard MNT – even when using specifically designed influenza viruses

5

1280

D0

D42

5625

>80000

But: anti-NA AB clearly detectable in chemical assay

However: No correlation between MNT results and anti-NA titers (but not too surprising)

⇒ Potential improvements (ongoing investigations):

- Longer incubation period after infection (to capture more NA-AB-sensitive replication cycles)

 \rightarrow standard: 22-25 hrs (about 3 influenza replication cycles)

 \rightarrow extend to 3 – 5 days

- Lower initial starting infectious dose to allow for more NA-AB-sensitive replication cycles

Detection of NA-AB Titer by Western Blot

Pandemic H1N1

Although currently not a regulatory requirement all tested vaccines contain detectable amounts of NA Western blot for antibody detection: Vaccine X antigen run in SDS-PAGE (as NA source) HA- and NA-bands detected with sera from vaccinated children Subject No.: 205 201 203 201 204 5-2 Positive control serum

⇒ NA-antibodies clearly detectable – and correlate well with fetuin-assay results

⇒ Vaccines induce anti-NA antibodies

Quantification: eg Odyssey technology (currently evaluated) use positive control serum for standard curve

Protein profile of seasonal vaccine monovalent bulks:

Detection of NA-AB Titer by Western Blot

Western blot strips (1-11):

H3N2 monvalent split vaccine bulk analysed with different dilutions of anti-N2-NA serum (NIBSC) (as primary antibody)

Blot NA-band intensities against serum dilution

Comparison of NA-AB detection by chemical assay and WB

At present, no clear correlation – more data for standardisation/optimisation needed \rightarrow Eg Optimisation of serum concentrations (1st and 2nd antibody) / antigen amount...

- multiple repeats to get more robust/reliable data
- => Nevertheless considered a valuable approach for detection of NA-specific antibodies

That's all Thank you

Federal Institute for Vaccines and Biomedicines

Section Viral Vaccines