Early Investigations of MERS-CoV

Lab – Epi Integration

Dr. Anthony Mounts 3 September 2013

The Big Questions – MERS-CoV

- How transmissible?
 - Secondary attack rate in households, HCF, work place.
 - **Ro**
 - Roll of risk factors and settings e.g. chronic illness and institutions
- Source of the virus
 - Animal reservoir
 - Time of emergence
- Clinical spectrum of severity
 - Proportion of severe/mild cases
 - Types of complications e.g. renal failure
- Exposures that result in human infection

Types of Protocols Needed

- Generic interview form with open ended questions
- Case control study of exposures
 - Determine exposures that result in transmission from non-human sources
 - Comparison of index/sporadic cases to random, matched controls
 - Could use serology to determine controls but not critical for a novel, rare infection.
- Health Care Facilities
 - Evidence of human-to-human transmission
 - Types of exposures that result in infection (e.g. medical procedures)
 - Case control study of exposed and unexposed HCW
 - Infections or seropositives in cohort of all exposed

Types of Protocols Needed

- Contact study
 - Rates of human-to-human transmission (difficult)
 - Spectrum of disease, rates of mild disease (if prospective w/ acute and convalescent sera)
 - Rates of sero(+) in different exposure-type cohorts of case exposure environment(s): e.g. farm, home, workplace, bridge club – not really about contact w/ case
- Serial cross-sectional surveys of risk groups
 - Population studies can look at rates of infection
 - Prospective cohort study to determine exposures that result in infection
- Animal surveys: source of virus

Laboratory Issues

- PCR was quickly available and labs offered support
 - Initial global discussions led to identification of appropriate targets for screening and confirmation
 - Local capacity varied lab support helped
 - Unclear initially which specimens most appropriate: upper vs. lower
- Early recommendations included:
 - Retrospective testing of stored specimens from SARI surveillance
 - Testing of all unexplained pneumonia in affected countries
 - Inclusion of testing in SARI surveillance algorithms.
- Cost and human resources were limiting factors

Laboratory Issues

- Serological assays being developed by multiple institutions on a variety of formats, using different protein substrates
 - ELISA, IFA, LIPS, protein arrays, neutralization
 - Spike protein, nuclear protein
- Challenges to development include limited number viruses and positive sera
 - Difficult to know sensitivity
 - Not possible to know the comparability without standards
 - Antibody kinetics unknown though Jordanian cases had (+) 1 year later
- Epi implications:
 - Very useful tor comparing relative positivity of groups of people
 - Need to include controls in sero-epi studies background rates of positivity related to cross reactivity or previous infection unknown.
 - Not yet possible to use for diagnostic purposes positives are classified as "probable"

Lessons Learned

- Serological assays can take a long time to perfect
 - Actually, they are never perfect but imperfect assays are useful, especially in comparing groups.
 - Serological data, like epi data, are "messy" but can provide critical understanding about risk groups, infection rates, and spectrum of disease
 - International collaboration critical to development.
- Much misunderstanding among epi about what test means in an individual
 - Cross-reactivity not widely appreciated or understood
 - No single test is going to be definitive

