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The Zika virus outbreak in Latin America resulted in con-
genital malformations, called congenital Zika syndrome 
(CZS). For unknown reasons, CZS incidence was high-
est in northeastern Brazil; one potential explanation is that 
dengue virus (DENV)–mediated immune enhancement 
may promote CZS development. In contrast, our analyses 
of historical DENV genomic data refuted the hypothesis 
that unique genome signatures for northeastern Brazil 
explain the uneven dispersion of CZS cases. To confirm 
our findings, we performed serotype-specific DENV neu-
tralization tests in a case–control framework in northeast-
ern Brazil among 29 Zika virus–seropositive mothers of 
neonates with CZS and 108 Zika virus–seropositive con-
trol mothers. Neutralization titers did not differ significantly 
between groups. In contrast, DENV seroprevalence and 
median number of neutralized serotypes were significantly 
lower among the mothers of neonates with CZS. Support-
ed by model analyses, our results suggest that multitypic 
DENV infection may protect from, rather than enhance, 
development of CZS.

The 2015–2016 Zika epidemic in Brazil was associ-
ated with congenital malformations summarized as 

congenital Zika syndrome (CZS) (1–6). As a consequence, 
abortion requests and pregnancy delays increased dramati-
cally in Brazil and all of Latin America (7,8). For unknown 
reasons, CZS incidence was highest in northeastern Brazil 

(1,4,9,10). In Asia and Africa, where Zika virus circulated 
for much longer than it did in the Americas, Zika virus in-
fections have not been consistently linked to CZS develop-
ment; only sporadic cases have been reported (11). Thus, 
CZS development might be affected by >1 cofactor (9,12). 
The hypothetical list of cofactors affecting CZS develop-
ment includes maternal vaccination history (12), exposure 
to larvicides (5), or socioeconomic factors (1,13).

Similar to the ubiquitous dengue virus (DENV), which 
occurs as 4 distinct serotypes, Zika virus is a flavivirus (14). 
Secondary DENV infections can be more severe than pri-
mary infections because of antibody-dependent enhance-
ment (i.e., heterotypic subneutralizing antibodies enhanc-
ing virus entry into poorly susceptible cells) (15,16). Zika 
virus infection can also be enhanced by DENV antibodies 
in vitro (17,18) and in mice (19). Thus, DENV-mediated 
antibody-dependent enhancement may be a major cofac-
tor of CZS development in humans (19–21). However, 
antibody-dependent enhancement was not observed in ex-
perimentally Zika virus–infected nonhuman primates (22) 
and during pivotal epidemiologic studies from Brazil that 
assessed neither individual DENV serotypes nor micro-
cephaly cases (5,9,23). In addition, DENV is ubiquitous in 
all regions of Brazil (20). Therefore, to explain the accu-
mulation of CZS cases in northeastern Brazil, a hypotheti-
cal DENV-mediated effect enhancing CZS development 
would require region-specific differences in past DENV 
exposure. To investigate the role that preexisting DENV 
immunity has in CZS development, we conducted serolog-
ic testing in a nested case–control framework and analyzed 
historical DENV genomic data from Brazil.

Materials and Methods

Study Population
We compared 29 mothers of children born with CZS (cas-
es) and 108 mothers of children born without CZS (con-
trols) from Salvador, northeastern Brazil. All mothers had 
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evidence of past Zika virus exposure, determined by use of 
ELISAs and plaque-reduction neutralization tests (PRNTs) 
as described previously (13). Samples were collected con-
secutively at the time of delivery from May 2015 through 
December 2016 at the University of Bahia Climério de 
Oliveira maternity ward (Appendix Figure, https://wwwnc.
cdc.gov/EID/article/25/8/19-0113-App1.pdf). The study 
was approved by the Institutional Research Ethics Board 
under protocol no. 1.408.49, and all women delivering dur-
ing that period accepted participation in the protocol. Age 
distributions of cases and controls did not differ signifi-
cantly (median age 26 years for cases, interquartile range 
22.0–33.5; median age 29 years for controls, interquartile 
range 23.3–34.0; p = 0.26 by t-test).

Diagnosis of CZS
CZS was diagnosed by attending gynecologists. Lead 
symptoms of CZS, as defined by Moore et al. (24), includ-
ed microcephaly and other neurologic birth defects (e.g., 
intracranial calcifications, ventriculomegaly, dysgenesis of 
the corpus callosum, Dandy-Walker–like malformations, 
hydranencephaly, porencephaly, hydrocephalus, severe in-
tracranial calcifications, and decreased brain tissue) (13). 
Microcephaly was identified when the measurement of the 
cephalic circumference was 2 SDs below that of neonates 
of the corresponding gestational age, according to inter-
growth charts from the World Health Organization in addi-
tion to clinical and imaging data.

PRNTs
For the serotype-specific PRNT for DENV, we used 3 μL 
of heat-inactivated serum (56°C, 30 min) diluted by using 
Dulbecco modified Eagle medium, supplemented with 1% 
fetal calf serum at 1:50, 1:150, 1:450, 1:1,350, 1:4,050, and 
1:12,150. We split serum dilutions into 4 equal aliquots 
and incubated them separately in 96-well plates with 60 
PFUs of DENV serotypes 1–4 (Appendix Table 1) for 60 
min at 37°C. Next, we incubated the virus/serum mixtures 
for 90 min at 37°C in 5% CO2 on Vero cells grown in 24-
well plates, followed by a methylcellulose/minimum es-
sential medium overlay (2% fetal calf serum, 1.2% final 
methylcellulose concentration). After incubation for 4 days 
(DENV-1, -3, and -4) or 5 days (DENV-2), we performed 
formaldehyde fixation, crystal violet staining, and plaque 
counting. We calculated neutralizing antibody titers by us-
ing the built-in variable slope model in GraphPad Prism 
6 (GraphPad Software, LLC, https://www.graphpad.com). 
Any titer >1:10 that reduced DENV PFU by >90% com-
pared with control titers was considered positive. PRNT is 
the standard for flavivirus serology. DENV vaccine stud-
ies commonly rely on 50% plaque reduction to determine 
DENV serotype-specific antibody responses (25). To mini-
mize the effect of potential cross-reactivity between DENV 

serotypes on our results, we selected a less sensitive but 
highly specific 90% PRNT (PRNT90).

Phylogenetic Analyses
For phylogenetic analyses, we retrieved all DENV se-
quences available from GenBank as of June 15, 2018, 
that contained information on year and place of isolation. 
We constructed neighbor-joining trees in MEGA7 (26) 
by using a percentage distance method, a pairwise dele-
tion option, and 1,000 bootstrap replicates. We analyzed 
either the junction of the envelope and the nonstructural 
protein 1 (NS1) encoding regions (polyprotein gene posi-
tions 2215–2454) or a fragment of 561 nt within the NS1 
region (polyprotein gene positions 2650–3210). For clarity 
of presentation, we excluded sequences of <0.5% mutual 
nucleotide sequence distance. To show different genotypes, 
we included selected reference strains (Appendix Table 2). 
All DENV genome positions given within this article refer 
to a DENV prototype strain available in GenBank under 
accession no. KC294223.

Confirmation of DENV Strains Used for PRNT
We confirmed the designation and serotype of DENV 
strains applied for PRNT by Sanger sequencing of the prM-
C domains using strain-specific oligonucleotide primers. 
These primers are available upon request.

Statistical Analyses and Visualization of PRNT Results
To plot PRNT results, we used GraphPad Prism 6. All p 
values result from 2-tailed tests. For power calculations, we 
used OpenEpi version 3 (27) for 2-sided 95% CIs. Regres-
sion lines were calculated by using a least squares (ordi-
nary) fit method.

Model Testing
To compare the effects of different factors on CZS forma-
tion, we tested mathematical logistic regression models. 
Each model considered 1 defined variable to predict the 
binary outcome as CZS case or control. We included for 
testing binary predictor variables such as presence or ab-
sence of DENV-1 neutralization, as well as ordinal (e.g., 
number of neutralized DENV serotypes) or continuous pre-
dictor variables, such as DENV-1 PRNT titers. Cases were 
coded as 1 and controls as 0. We fitted 15 models by using 
the generalized linear model function of R version 3.5.2 
(https://www.r-project.org). To compare different models, 
we calculated the Akaike information criterion (AIC), the 
difference between a given and the best-supported model 
in AIC, and the Akaike weights by using the bbmle pack-
age version 1.0.20 in R. To show which models allow sig-
nificant CZS case prediction, we calculated likelihood ratio 
tests for each model, and to show the effect strength of the 
models, we calculated odds ratios.
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Results
After the reinfestation of Brazil with the main DENV vec-
tor, Aedes aegypti mosquitoes, in 1976 (28), DENV-1 
was introduced in 1986 (29), DENV-2 in 1990 (30), and 
DENV-3 in 2000 (31); DENV-4 reemerged in 2007 after 
an absence of 25 years (32) (Figure 1). At most, 4 years 
after their first detection in other regions of Brazil, all 4 
DENV serotypes were found in northeastern Brazil. In the 
databases, we identified 992 unique DENV sequences from 
Brazil that we used to analyze genomic DENV signatures 
hypothetically segregating the northeast and other regions 
in Brazil. Analyses of the envelope-NS1 junction, which 
is frequently used for genome-based serotyping (33), re-
vealed high genetic identity of DENV strains from the 
northeast and other regions of Brazil during 30 years (Fig-
ure 2, panel A). A single DENV-4 clade apparently was 
found uniquely in northeastern Brazil during 2011–2015 
(Figure 2, panel A). Nonetheless, these DENV-4 strains 
were closely related to strains from other regions when a 
different, larger partial NS1 region was analyzed (Figure 
2, panel B). In summary, our analyses showed no phylo-
genetic evidence for a unique DENV signature segregating 
northeastern Brazil from other regions.

Low DENV antibody titers have been shown to be a 
risk factor for severe disease with heterotypic DENV in-
fection (15). Therefore, we analyzed the magnitude of 
DENV antibody titers. Overall median reciprocal PRNT90 
titers within this study were 56.5 (95% CI 42.0–79.0) for 
cases and 61.4 (95% CI 54.3–73.1) for controls. Serotype-
specific titers were 68.7 (95% CI 51.2–83.2) for DENV-
1, 102.8 (95% CI 79.6–130.6) for DENV-2, 44.8 (95% 
CI 35.3–55.8) for DENV-3, and 52.6 (95% CI 41.9–66.6) 
for DENV-4. DENV titers did not differ significantly be-
tween cases and controls or between serotypes (Figure 3, 
panel A). However, we have previously shown that Zika 
virus antibody titers are significantly higher among moth-
ers of neonates with CZS than among mothers of neonates  

without evidence of CZS (34), hypothetically affecting 
DENV antibody titer estimates. In our cohorts, Zika virus 
titers did not correlate with DENV titers (Figure 3, panel 
B) or with the number of neutralized DENV serotypes (p 
= 0.8459 by analysis of variance) (Figure 3, panel C), sug-
gesting robustness of our results irrespective of individual 
Zika virus PRNT titers.

Strikingly, the overall DENV seroprevalence was sig-
nificantly lower among cases, at 65.5%, than among con-
trols, at 91.7% (p = 0.0003 by χ2 test; power 90.4%). For 
each DENV serotype, seroprevalence was also consistently 
higher among cases than controls (Figure 4, panel A). The 
relatively lower seroprevalence of DENV-3 and DENV-4 
compared with DENV-1 and DENV-2 among study par-
ticipants is consistent with the shorter circulation of these 
viruses in Brazil (Figure 1), again suggesting robustness of 
our data. Last, the median number of neutralized DENV 
serotypes was significantly lower among cases than among 
controls (p<0.0004 by Mann-Whitney U test; power 94.8%) 
(Figure 4, panel B). Only 27.6% of cases, compared with 
50.9% of controls, had neutralizing antibodies against all 
4 serotypes. Predominance of multitypic DENV expo-
sure among controls over cases was consistently observed 
among participants in all age groups (Figure 4, panel C).

We conducted generalized linear model analyses to 
compare the effects of various factors on CZS formation. 
For model analysis, we considered factors that differed 
significantly between cases and controls in bivariate com-
parisons and factors that did not differ significantly. Factors 
included the presence and titers of neutralizing antibodies 
against specific DENV serotypes and the overall number 
of neutralized serotypes. We created 15 logistic regres-
sion models, each considering 1 factor potentially affect-
ing CZS development (Table). With our data applied, the 
models considering neutralization of >2 DENV serotypes 
(AIC = 130.4) or the cumulative number of neutralized 
DENV serotypes showed the highest support (AIC = 130.6). 

Figure 1. Timeline of dengue virus introduction in Brazil and birth years of participants in study of dengue virus cross-protection against 
congenital Zika syndrome, northeastern Brazil. DENV, dengue virus.
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Regarding the presence of serotype-specific neutralizing 
antibodies, models considering DENV-4 (AIC = 131.4) 
and DENV-2 (AIC = 131.5) neutralization showed the 
best support. Models considering age or antibody titers 
showed relatively lower support with AICs >140. Of all 
tested models, the model considering neutralization of >2 
DENV serotypes showed the highest reduction of CZS risk 
by 84.2% (95% CI 60.5%–93.8%). Of those models con-
sidering nonbinary factors, the cumulative number of neu-
tralized DENV serotypes showed the highest reduction of 
CZS risk by 42.3% (95% CI 23.7%–56.8%) per increase of 

neutralized serotype. The model considering neutralization 
of 1 DENV serotype only as a risk factor was not supported 
statistically or by AIC.

Discussion
Contrary to a large body of in vitro data, our epidemio-
logic data strongly suggest cross-protection from CZS 
development by multitypic DENV immunity. The protec-
tive effect was observed in bivariate comparisons and in 
model analyses. Our interpretation is consistent with an-
ecdotal evidence reporting near-complete lack of DENV 

Figure 2. Phylogenies of dengue virus strains from Brazil. Strains circulating in 
northeastern and remaining Brazil are grouped in intervals of 5 years. A) Envelope-
NS1 junction phylogeny. Roman numerals indicate reference sequences for relevant 
DENV genotypes (Appendix Table 2, https://wwwnc.cdc.gov/EID/article/25/8/19-0113-
App1.pdf). DENV-2 genotypes identified by Roman numerals represent the following 
geographic designations: I, Asian I; II, Asian II; III, American; IV, cosmopolitan I; V, 
cosmopolitan II; VI, cosmopolitan III; VII, Asian/American. B) NS1 phylogeny for 2011–
2015. Reference sequences were included. Scale bars indicate percent nucleotide 
distance. DENV, dengue virus; NS, nonstructural.
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activity during the Zika virus epidemic, hypothetically 
resulting from cross-protection induced by previous Zika 
virus exposure (35). Moreover, in experimentally infected 
nonhuman primates, preexisting DENV immunity caused 
relatively faster clearance of Zika viremia (22). Strong 
support for our interpretation is provided by 2 recently 
published epidemiologic studies from Brazil and Nicara-
gua (36,37). In both studies, preexisting DENV immunity 
significantly reduced the risk for symptomatic Zika virus 
infection. Although those studies did not examine the ef-
fect of serotype-specific antibodies, in several epidemio-
logic studies, multitypic DENV immunity was cross-pro-
tective for postsecondary DENV infections (15,38,39). 
In our study, the relatively stronger cross-protection by 
neutralization of DENV-2 and DENV-4 may suggest that 
recent DENV infection boosts cross-protection against 
CZS because both serotypes reportedly were the predomi-
nant serotypes in northeastern Brazil before the Zika virus 
outbreak (40).

Antibody protection against DENV is related to anti-
body titers, and low titers are a risk factor for severe dengue 

(15). In our study, putative DENV-mediated cross-protec-
tion against CZS was apparently not linked to antibody 
titers. Thus, cross-protection from CZS may be mediated 
by immune responses (41) other than cross-protective  
antibodies. In humans, preexisting DENV immunity has 
been shown to boost CD4+ and CD8+ T-cell responses 
during Zika virus infections (42–44). In pregnant mice, 
DENV cross-reactive CD8+ T cells have been shown to 
be a key component of protection from fetal injury or de-
mise during Zika virus infection (45,46). Of note, CD8+ T 
cells form a part of the placental barrier that protects the 
fetus from vertically acquired infections. DENV-primed 
CD8+ T cells might provide cross-protection from CZS 
at the placental barrier (45). As T-cell–mediated DENV 
cross-protection wanes over time (39,45), consecutive 
heterotypic DENV infections might have afforded rela-
tively stronger and prolonged cross-protection from CZS 
in controls.

Our study was limited by the absence of longitudi-
nal samples, thereby preventing definite assessments 
of identical DENV serostatus at the time of congenital 

Figure 3. Serologic test results from participants in case–control study of cross-protection of dengue virus infection against 
congenital Zika syndrome, northeastern Brazil. A) Serotype-specific PRNT90 titers for cases and controls. Statistical significance 
(p<0.05) was calculated by the Mann–Whitney U test; no significance was found. B) Zika virus neutralizing antibody titers as a 
function of the number of neutralized DENV serotypes. C) Correlation of DENV and Zika virus titers. Statistical significance (p<0.05) 
was calculated by Pearson correlation; no significance was found. DENV, dengue virus; NS, not significant; PRNT90, 90% plaque 
reduction neutralization test.
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Zika virus infection compared with the time of testing 
at delivery. Nonetheless, the uniformity of our results 
and low DENV activity during the Zika epidemic (1,35) 

speak against putative DENV exposure of mothers af-
ter the time of congenital Zika virus infection. Because 
sampling was conducted at delivery, we could not assess 

Figure 4. Dengue virus prevalence and neutralization among participants in case–control study of cross-protection of dengue virus 
infection against congenital Zika syndrome, northeastern Brazil. A) Serotype-specific DENV seroprevalence in cases and controls. 
Statistical significance was calculated by χ2 test. *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001. B) Multitypic DENV neutralization in cases 
and controls. Statistical significance for the numbers of neutralized DENV serotypes was calculated by using the Mann–Whitney U test. 
***p = 0.0004. C) Multitypic DENV neutralization in cases and controls in different age groups. DENV, dengue virus. A color version of 
this figure is available online (http://wwwnc.cdc.gov/EID/article/25/8/19-0113-F4.htm).

 
Table. Comparison of models used to identify factors affecting development of congenital Zika syndrome in study of dengue virus 
cross-protection against congenital Zika syndrome, northeastern Brazil* 
Model Predictor scale AIC ΔAIC AW Odds ratio (95% CI) p value 
Neutralization of >2 DENV serotypes Binary 130.4 0 0.2812 0.158 (0.062–0.395) <0.0001 
No. neutralized serotypes Ordinal, 5 ranks 130.6 0.2 0.2590 0.577 (0.432–0.763) <0.0001 
DENV-4 neutralization Binary 131.4 0.9 0.1750 0.192 (0.078–0.449) <0.0001 
DENV-2 neutralization Binary 131.5 1.1 0.1657 0.170 (0.068–0.423) <0.0001 
Neutralization of >3 DENV serotypes Binary 133.0 2.6 0.0771 0.210 (0.086–0.492) <0.0001 
Neutralization of >1 DENV serotypes Binary 134.8 4.4 0.0319 0.170 (0.060–0.477) <0.0001 
DENV-1 neutralization Binary 139.1 8.6 0.0038 0.298 (0.122–0.733) 0.009 
DENV-3 neutralization Binary 140.3 9.9 0.0020 0.368 (0.154–0.844) 0.018 
Neutralization of 4 DENV serotypes Binary 140.5 10.1 0.0018 0.361 (0.139–0.852) 0.020 
Anti-DENV-2 PRNT90 titer Continuous 141.8 11.4 <0.001 0.998 (0.990–1.000) 0.043 
Anti-DENV-1 PRNT90 titer Continuous 142.8 12.4 <0.001 0.997 (0.990–1.000) 0.079 
Neutralization of 1 DENV serotype Binary 143.2 12.8 <0001 3.328 (0.776–13.477) 0.101 
Age of mothers when giving birth Continuous 143.2 12.8 <0.001 0.953 (0.896–1.010) 0.136 
Anti-DENV-3 PRNT90 titer Continuous 144.2 13.8 <0.001 0.996 (0.990–1.000) 0.195 
Anti-DENV-4 PRNT90 titer Continuous 144.9 14.5 <0.001 0.998 (0.990–1.000) 0.326 
*p values were calculated by likelihood ratio tests of the different models. Models are sorted by AIC, which is an estimator of the model’s quality; models 
with lower AIC values are superior to models with higher AIC values. The scale of predictor variables must be considered when comparing ORs of 
different models. AIC, Akaike information criterion; AW, Akaike weight; DENV 1–4, dengue virus types 1–4; OR, odds ratio; PRNT90, 90% plaque 
reduction neutralization test; ΔAIC, difference between a given and the best-supported model in AIC. 
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the time of maternal and potential congenital Zika virus 
infection, which affects CZS development (2). Because 
the dates of deliveries were similar among cases and 
controls sampled continuously within Salvador during 
the peak of the Zika outbreak (1), it seems plausible that 
cases and controls acquired Zika virus infection at similar  
stages of pregnancy (i.e., cases were probably not exclu-
sively infected during the first trimester of pregnancy, 
which is most critical for CZS formation, compared with 
putatively later times of maternal infection in controls). 
Because of the small sample sizes, we could not perform 
PRNT for other endemic flaviviruses (e.g., yellow fever 
virus) that may also affect CZS development (19). How-
ever, northeastern Brazil has not consistently implement-
ed yellow fever vaccination, and samples were collected 
before the large yellow fever outbreak that struck Brazil 
in the aftermath of the Zika epidemic (47). The compari-
son of historic DENV circulation in northeastern Brazil 
and other regions of the country is limited by incomplete 
genome coverage, sampling biases, and resolution of the 
phylogenetic trees. Nevertheless, our results match the 
cornerstones of DENV circulation in Brazil and the da-
taset is larger than other virus databases. The strengths 
of our study include the combination of highly specific 
serotype-discriminating DENV PRNT90 for examination 
of preexisting DENV immunity with serologically well-
characterized samples from the most relevant persons 
(i.e., cases and controls sampled during the same time and 
in the same region) (13,34), model selection analyses, and 
an analysis of historical DENV exposure in Brazil.

Our data do not exclude the possibility of sporadic 
enhancement of CZS development by monotypic DENV 
immunity or subneutralizing antibodies from nonrecent 
exposure to DENV depending on the combination (48) 
and the chronologic sequence (49) of previous flavi-
virus infection and the time since previous flavivirus  
infections (50). However, our study strongly suggests 
a complex interaction between Zika virus and DENV 
immunity and a protective effect of strong preexisting 
multitypic DENV immunity of the mother on CZS de-
velopment in the fetus during the Zika virus outbreak in 
northeastern Brazil.
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